Certain Subclass of Analytic and Multivalent Functions Defined by Using a Certain Fractional Derivative Operator
DOI:
https://doi.org/10.5644/SJM.09.1.05Keywords:
Multivalent functions, fractional calculusAbstract
Making use of a certain operator of fractional derivative, a new subclass $ F_{\lambda }(n,p,\alpha ,\mu )$ of analytic and p-valent functions with negative coefficients is introduced and studied here rather systematically. Coefficient estimates, a distortion theorem and radii of p-valently close-to-convexity, starlikeness and convexity are given. Finally several applications involving an integral operator and a certain fractional calculus operator are also considered.
2010 Mathematics Subject Classification. 30C4
Downloads
References
O. Altintas, H. Irmark and H. M. Srivastava, A subclass of analytic functions defined by using certain operators of fractional calculus, Comput. Math. Appl., 30 (1) (1995), 1–9.
M. K. Aouf and H. E. Darwish, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, II, Utilitas Math., 46 (1994), 167–177.
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135(1969), 429–446.
S. S. Bhoosnurmath and S. R. Swamy, Certain classes of analytic functions with negative coefficients, Indian J. Math., 27 (1985), 89–89.
M. -P. Chen, H. Irmak and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl., 214 (1997), 674–490.
S. K. Lee, S. Owa and H. M. Srivastava, Basic properties and characterizations of a certain class of analytic functions with negative coefficients, Utilitas Math. 36 (1989), 121–128.
R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1969), 755–758.
A. E. Livingston, On the radius of univalence of cerain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352–357.
S. Owa, On the distortion theorems, I, Kyungpook Math. J., 18 (1978), 55–59.
H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, I and II, J. Math. Anal. Appl., 171 (1992), 1–13; ibid. 192 (1995), 973–688.
H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus and Their Applivations, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.