${I}$--Convergence on Cone Metric Spaces

Authors

  • Sudip Kumar Pal Hoogly, West Bengal, India
  • Ekrem Savas Istanbul Ticaret University, Department of Mathematics, Üsküdar–Istanbul, Turkey
  • Huseyin Cakalli Department of Mathematics, Maltepe University, Maltepe–Istanbul, Turkey

DOI:

https://doi.org/10.5644/SJM.09.1.07

Keywords:

Cone metric space, $I$ and $I^*$-convergence, $I$ and $I^*$-Cauchy condition, condition $(AP)$

Abstract

The concept of $I$--convergence is an important generalization of statistical convergence which depends on the notion of an ideal $I$ of subsets of the set $\mathbb{N}$ of positive integers. In this paper we introduce the ideas of $I$--Cauchy and $I^*$--Cauchy sequences in cone metric spaces and study their properties. We also investigate the relation between this new Cauchy type condition and the property of completeness.

 

2000 Mathematics Subject Classification. 40A05, 40D25

Downloads

Download data is not yet available.

References

M. Balacerzak, K. Dems and A. Kowissarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl., 328 (1) (2007), 715–729.

Pratulananda Das and S. K. Ghosal, Some further result on I-Cauchy sequences and condition (AP), Comp. Math. Appl., 59 (2010), 2597–2600.

Pratulananda Das, P. Kostyrko, W. Wilezynski and P. Malik, I and $I^*$-convergence of double sequences, Math. Slovaca, 58 (2008), 605–620.

K. Dems, On $I−$Cauchy sequences, Real Anal. Exch., 30 (1), (2004/2005), 123–128.

H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.

J. A. Fridy, On statistical convergence, Analiysis, 5 (1985), 301–313.

P. Kostyrko, T. Sal´at and W. Wilczy´nski, ˇ I-convergence, Real Anal. Exch., 26 (2)(2000/2001), 669–686.

B. K. Lahiri and Pratulananda Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151–156.

B. K. Lahiri and Pratulananda Das, I and $I^*$-convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153–160.

H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476.

H. Long-Guang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476.

A. Nabiev, S. Pehlivan and M. Gurdal, On I−Cauchy sequences, Tainanese J. Math., 12 (2)(2007), 569–576.

A. Sahiner, M. Gurdal, S. Sultan and H. Gunawar, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (5) (2007), 1477–1484.

T. Sˇal´at, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139–150.

H. Steinhaus, Sur la convergence ordinate et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.

D.Turkoglu and M. Abuloha, Cone metric spaces and fixed point theorems in diametrically contractive mappings, to appear in Acta Math. Sin.

Downloads

Published

07.06.2024

How to Cite

Pal, S. K., Savas, E., & Cakalli, H. (2024). ${I}$--Convergence on Cone Metric Spaces. Sarajevo Journal of Mathematics, 9(1), 85–93. https://doi.org/10.5644/SJM.09.1.07

Issue

Section

Articles