Solvability of a System of Nonconvex General Variational Inequalities
DOI:
https://doi.org/10.5644/SJM.09.1.10Keywords:
System of nonconvex general variational inequality, fixed point problem, proximal normal cone, strongly monotone mappingAbstract
Using the prox-regularity notion, we introduce a system of nonconvex general variational inequalities and a general three step algorithm for approximate solvability of this system. We establish the convergence of three-step projection method for a general system of nonconvex variational inequality problem. We obtain as a particular case some known results.
2000 Mathematics Subject Classification. 47J20, 65K10, 65K15, 90C33
Downloads
References
M. Bounkhel, L. Tadjand A. Hamdi, Iterative schemes to solve nonconvex variational problems, J. Inequal. Pure Appl. Math., 4 (1), Art. 14 (2003).
F. H. Clarke, Y. S. Ledyaev and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, Berlin, 1998.
A. Moudafi, Projection methods for a system of nonconvex variational inequalities, Nonlinear Anal., 71 (2009), 517-520.
M. A. Noor, General variational inequaltities, Appl. Math. Lett., 1 (1988), 119–121.
M. A. Noor, New extragradienmt-type method for general variational inequalities, J. Math. Anal. Appl., 277 (2003), 379–395.
M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., 152 (2004), 199–277.
M. A. Noor, Iterative methods for general nonconvex variational inequalities, Albanian J. Math., 3 (2009), 117-127.
R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231–5249.
M. Sibony, M´ethods it´eratives pour les ´equations et in´equations aux d´eriv´ees partielles non lin´eaires de type monotone, Calcolo, 7 (1970), 65–183.
G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Math. Acad. Sci. Paris, 258 (1964), 4413–4416.
R. U. Verma, Projection methods, algorithms and new systems of variational inequalities, Comp. Math. Appl., 41 (2001), 1025–1031.
R. U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett., 18 (2005), 1286–1292.