Pencils of Euler Triples, II

Authors

  • Zvonko Čerin Zagreb, Croatia

DOI:

https://doi.org/10.5644/SJM.08.2.02

Keywords:

Ring, squares, $S(n)$-triple, Euler triple, pencil of Euler triples, basic symmetric functions, determinants, generalized determinants, vector cross-product

Abstract

In this second part of the paper we will continue to study the families of triples $(u,v,w)$ of elements in a commutative ring $R$ with the property that ...

 

2000 Mathematics Subject Classification. Primary 11B37, 11B39, 11D09

Downloads

Download data is not yet available.

References

A. Baker and H. Davenport, The equations $3,x^2-2=y^2$ and $8,x^2-7=z^2$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.

G. E. Bergum and V. E. Hoggatt, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart., 15 (1977), 323–330.

E. Brown, Sets in which $x, y + k$ is always a square, Math. Comput., 45 (1985), 613–620.

Z. Čerin and G. M. Gianella, On Diophantine triples from Pell and Pell-Lucas numbers, Acc. Sc. Torino - Atti Sci. Fis., 143 (2009), 83–94.

Z. Čerin and G. M. Gianella, On D(−4) and D(8) triples from Pell and Pell-Lucas numbers, Rend. Circ. Mat. Palermo Suppl. N., 81 (2009), 73–83.

Z. Čerin, On D(−1) and D(5) triples from Fibonacci and Lucas numbers, (preprint).

Z. Čerin, Pencils of Euler triples, I, (preprint).

Z. Čerin, On extended Euler quadruples, (preprint).

http://www.math.hr/˜duje/Diophantine m-tuples, References.html

A. Dujella, Generalized Fibonacci numbers and the problem of Diophantus, Fibonacci Quart., 34 (1996), 164–175.

L. Euler, Commentationes Arithmeticae I, In Opera Omnia, Series I, volume II, B.G. Teubner, Basel, 1915.

B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. (2), 27 (1976), 349–353.

L. Jones, A Polynomial Approach to a Diophantine Problem, Math. Mag., 72 (1999), 52–55.

M. Radić, A definition of determinant of rectangular matrix, Glasnik Mat., 1 (21) (1966), 17–22.

Downloads

Published

07.06.2024

How to Cite

Čerin, Z. (2024). Pencils of Euler Triples, II. Sarajevo Journal of Mathematics, 8(2), 179–192. https://doi.org/10.5644/SJM.08.2.02

Issue

Section

Articles