Fractional Integral Inequalities Involving Convexity
DOI:
https://doi.org/10.5644/SJM.08.2.04Keywords:
Fractional integral, fractional radial derivative, Hardy fractional inequality, Poincar´e fractional inequality, Erd´elyi-Kober fractional integralsAbstract
Here we present general integral inequalitites involving convex and increasing functions applied to products of functions. As specific applications we derive a wide range of fractional inequalities of Hardy type. These involve the left and right: Erdélyi-Kober fractional integrals, mixed Riemann-Liouville fractional multiple integrals. Next we produce multivariate Poincaré type fractional inequalitites involving left fractional radial derivatives of Canavati type, Riemann-Liouville and Caputo types. The exposed inequalities are of $L_{p}$ type, $p\geq 1$, and exponential type.
2000 Mathematics Subject Classification. 26A33, 26D10, 26D15
Downloads
References
G. A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009.
G. A. Anastassiou, On right fractional calculus, Chaos Solitons Fractals, 42 (2009), 365–376.
G. A. Anastassiou, Balanced fractional Opial inequalities , Chaos Solitons Fractals, 42 (3) (2009), 1523–1528.
G. A. Anastassiou, Fractional Korovkin theory, Chaos Solitons Fractals, 42 (2009), 2080–2094.
G. A. Anastassiou, Fractional representation formulae and right fractional inequalities, Math. Comput. Modelling, 54 (11–12) (2011), 3098–3115.
J. A. Canavati, The Riemann-Liouville Integral, Nieuw Arch. Wiskd., 5 (1) (1987), 53–75.
Kai Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Vol 2004, 1st edition, Springer, New York, Heidelberg, 2010.
A. M. A. El-Sayed and M. Gaber, On the finite Caputo and finite Riesz derivatives, Electron. J. Theor. Phys., 3 (12) (2006), 81–95.
R. Gorenflo and F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://www.maphysto.dk/oldpages/ events/LevyCAC2000/MainardiNotes/fm2k0a.ps.
G. D. Handley, J.J. Koliha and J. Peˇcari´c, Hilbert-Pachpatte type integral inequalities for fractional derivatives, Frac. Calc. Appl. Anal, 4 (1) 2001, 37–46.
H. G. Hardy, Notes on some points in the integral calculus, Messenger of Mathematics, 47 (10) 1918, 145–150.
S. Iqbal, K. Krulic and J. Pecaric, On an inequality of H.G. Hardy, J. Inequal. Appl., Volume 2010, Article ID 264347, 23 pages.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.
T. Mamatov, S. Samko, Mixed fractional integration operators in mixed weighted H¨older spaces, Frac. Calc. Appl. Anal., 13, (3) (2010), 245–259.
W. Rudin, Real and Complex Analysis, International Student Edition, Mc Graw Hill, London, New York, 1970.
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993.
D. Stroock, A Concise Introduction to the Theory of Integration, Third Edition, Birkh¨auser, Boston, Basel, Berlin, 1999.