Coefficient Estimates for Sakaguchi Type Functions

Authors

  • Halit Orhan Department of Mathematics Faculty of Science, Ataturk University, Erzurum, Turkey
  • Murat Çağlar Department of Mathematics Faculty of Science, Ataturk University, Erzurum, Turkey
  • Nihat Yagmur Department of Mathematics, Faculty of Science and Art, Erzincan University, Erzincan, Turkey

DOI:

https://doi.org/10.5644/SJM.08.2.05

Keywords:

Analytic function, coefficient estimates, Sakaguchi function, linear multiplier differential operator

Abstract

Let $S_{\lambda ,\mu }^{n}(\alpha ,t)$ be the class of normalized analytic functions defined in the open unit disk satisfying
\begin{equation*}
\Re \left( \frac{(1-t)z\left( D_{\lambda ,\mu }^{n}f(z)\right)
^{\prime }}{ D_{\lambda ,\mu }^{n}f(z)-D_{\lambda ,\mu
}^{n}f(tz)}\right) >\alpha \text{, \ \ }\left\vert t\right\vert
\leq 1,\text{ }t\neq 1
\end{equation*}
for some $\alpha (0\leq \alpha <1)$ and $D_{\lambda ,\mu }^{n}$ is a linear multiplier differential operator defined by the authors in \cite{DeOr}. The object of the present paper is to discuss some properties of functions $f(z)$ belonging to the classes $S_{\lambda ,\mu }^{n}(\alpha ,t)$ and $T_{\lambda ,\mu }^{n}(\alpha ,t)$ where $f(z)\in T_{\lambda ,\mu }^{n}(\alpha ,t)$ if and only if $zf^{\prime }(z)\in S_{\lambda ,\mu }^{n}(\alpha ,t).$

 

2000 Mathematics Subject Classification. 30C45

Downloads

Download data is not yet available.

References

D. Răducanu and H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal., 4 (1) (2010) 1--15.

E. Deniz, H. Orhan, The Fekete Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J. 50 (2010) 37--47.

F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Sci., 27 (2004) 1429--1436.

G. S. Sălăgean, Subclasses of univalent functions, Comp. Anal.--Proc. 5th Rom.-Finnish Seminar, Bucharest 1981, Part 1, Lec. Notes Math., 1013 (1983) 362-372.

K. Sakaguchi, On a certain univalent mapping, J. Math. Soc., Japan 11 (1959) 72--75.

N. E. Cho, O. S. Kwon, S. Owa, Certain subclasses of Sakaguchi functions, SEA Bull. Math., 17 (1993) 121--126.

S. Owa, T. Sekine, Rikuo Yamakawa, On Sakaguchi type functions, Appl. Math. Comp., 187 (2007) 356--361.

S. Owa, T. Sekine, Rikuo Yamakawa, Notes on Sakaguchi functions, RIMS, Kokyuroku, 1414 (2005) 76--82.

B. A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci., 10 (2) (2010), 206--211.

Y. Polatoğlu, E. Yavuz, Multivalued Sakaguchi functions, Gen. Math., 15 (2-3) (2007), 132--140.

B. A. Frasin, M. Darus, Subordination results on subclasses concerning Sakaguchi functions, J. Inequal. Appl., 2009, Article ID 574014.

A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364--370.

F. Ronning, On uniform starlikeness and related properties of univalent functions, Complex Variables, Theory Appl., 24 (1994) 233--239.

Downloads

Published

07.06.2024

How to Cite

Orhan, H., Çağlar, M., & Yagmur, N. (2024). Coefficient Estimates for Sakaguchi Type Functions. Sarajevo Journal of Mathematics, 8(2), 235–244. https://doi.org/10.5644/SJM.08.2.05

Issue

Section

Articles