On the Global Behavior of the Rational System $\boldsymbol{\displaystyle{ x_{n+1} = \frac{ \alpha_{1} }{ x_{n} + y_{n} } \quad \mathrm{AND} \quad y_{n+1} = \frac{ \alpha_{2} + \beta_{2} x_{n} + y_{n} }{ y_{n} } }}$

Authors

  • E. A. Grove Department of Mathematics, University of Rhode Island, Kingston, Rhode Island, USA
  • D. Hadley Department of Mathematics, University of Rhode Island, Kingston, Rhode Island, USA
  • E. Lapierre Department of Mathematics, Johnson and Wales University Providence, Rhode Island, USA
  • S.W. Schultz Department of Mathematics and Computer Science, Providence College Providence, Rhode Island, USA

DOI:

https://doi.org/10.5644/SJM.08.2.09

Keywords:

Bounded solutions, system of rational difference equations

Abstract

We investigate the system of rational difference equations in the title, where the parameters and the initial conditions are positive real numbers. We show that the system is permanent and has a unique positive equilibrium which is locally asymptotically stable. We also find sufficient conditions to insure that the unique positive equilibrium is globally asymptotically stable.

 

2000 Mathematics Subject Classification. 39A10, 39A11

Downloads

Download data is not yet available.

References

A. M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3

(2008), 1-35.

A. M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., {3} (2008), 195-225.

A. Brett, E. Camouzis, C. Lynd and G. Ladas, On the boundedness character of a rational system, JNMaS, (2009), 1-10.

E. Camouzis, M. Drymonis and G. Ladas, On the global character of the system $displaystyle{ x_{n+1} = frac{

alpha_{1} }{ x_{n} + y_{n} } }$ and $displaystyle{ y_{n+1} = frac{ gamma_{2} y_{n} }{ B_{2} x_{n} + y_{n} }, }$, Comm. Appl. Nonlinear Anal., {16} (2009), 51-64.

E. Camouzis, A. Gilbert, M. Heissan and G. Ladas, On the boundedness character of the system $displaystyle{ x_{n+1} =

frac{ alpha_{1} + gamma_{1} y_{n} }{ x_{n} } }$ and $displaystyle{ y_{n+1} = frac{ alpha_{2} + beta_{2} x_{n} + gamma_{2} y_{n} }{ A_{2} + x_{n} + y_{n} }, }$, Comm. Appl. Nonlinear Anal., (2009), 41-50.

E. Camouzis, M.~R.~S. Kulenovi'c, G. Ladas and O. Merino, Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), 303-323.

E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman

& Hall/CRC Press, 2008.

E. Camouzis and G. Ladas, Global results on rational systems in the plane, Part I, J. Difference Equ. Appl., {14} (2009), 433-458.

D. Clark, M. R. S. Kulenović and J.F. Selgrade, On a system of rational difference equations, J. Difference Equ. Appl., 11 (2005), 565-580.

J. M. Cushing, Periodically forced nonlinear systems of difference equations, J. Difference Equ. Appl., 3 (1998), 547-561.

E. A. Grove, Y. Kostrov, M. A. Radin and S. W. Schultz, On the global behavior of $displaystyle{ x_{n+1} = frac{alpha_{1} }{ x_{n} + y_{n} } ; ,mathrm{and} ;, y_{n+1} = frac{ alpha_{2} + y_{n} }{ B_{2}x_{n} + y_{n} } },$ Comm. Appl. Nonlinear Anal., 14 (2007), 33-56.

E. A. Grove and G. Ladas, 2005, Periodicities in Nonlinear Difference Equations (Chapman & Hall/CRC Press).

M. R. S. Kulenović and G. Ladas, 2001, Dynamics of Second Order Rational Difference Equations with Open Problems and

Conjectures (Chapman & Hall/CRC Press).

M. R. S. Kulenović and M. Nurkanović, Basins of attraction of an anti-competitive system of difference equations in the plane, Comm. Appl. Nonlinear Anal., 2 (2012), 41-53.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of a competitive system of linear fractional difference equations, J. Inequal. Appl. (2005), 127-144.

M. R. S. Kulenović and O. Merino, Competitive-exclusion versus competitive-coexistence for systems in the plane, Discrete Cont. Dyn. Syst. Ser., B 6 (2006), 1141-1156.

M. R. S. Kulenović and O. Merino, A global attractivity result for maps with invariant boxes, Discrete Cont. Dyn. Syst. Ser. B, 6 (2006), 97--110.

G. Lugo and F. J. Palladino, A note on local stability and the m-M theorem, J. Difference Equ. Appl., (2011) DOI:10.1080/10236198.2011.555764

E. Magnucka-Blandzi and J. Popenda, On the asymptotic behavior of a rational system of difference equations , J. Difference Equ. Appl., 5 (1999), 271-286.

Downloads

Published

07.06.2024

How to Cite

Grove, E. A., Hadley, D., Lapierre, E., & Schultz, S. (2024). On the Global Behavior of the Rational System $\boldsymbol{\displaystyle{ x_{n+1} = \frac{ \alpha_{1} }{ x_{n} + y_{n} } \quad \mathrm{AND} \quad y_{n+1} = \frac{ \alpha_{2} + \beta_{2} x_{n} + y_{n} }{ y_{n} } }}$. Sarajevo Journal of Mathematics, 8(2), 283–292. https://doi.org/10.5644/SJM.08.2.09

Issue

Section

Articles