On the Global Character of the Rational System $\boldsymbol{\displaystyle{ x_{n+1}=\frac{\alpha_1 }{A_1+ B_1 x_n + y_{n}} \quad \mathrm{AND} \quad y_{n+1}=\frac{\alpha_2+\beta_2 x_n}{A_2+B_2 x_n+C_2 y_n}}}$

Authors

  • E. Drymonis University of Rhode Island, Department of Mathematics, Kingston, RI, USA
  • G. Ladas University of Rhode Island, Department of Mathematics, Kingston, RI, USA

DOI:

https://doi.org/10.5644/SJM.08.2.10

Keywords:

Boundedness, boundedness characterization, global stability, periodicity, patterns of boundedness, rational difference equations, rational systems

Abstract

In this paper we investigate the global stability character of the rational system in the title with the parameters $B_1, B_2, A_2+C_2$ positive, the parameters $A_1,\alpha_2,\beta_2, A_2, C_2$ nonnegative, and with arbitrary nonnegative initial conditions such that the denominators are always positive.

 

2000 Mathematics Subject Classification. 39A10

Downloads

Download data is not yet available.

References

A. M. Amleh, E. Camouzis, and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3 (2008), 1--35.

A. M. Amleh, E. Camouzis, and G. Ladas, On the dynamics of a rational difference equation, Part 2,

Int. J. Difference Equ., 3 (2008), 195--225.

A. M. Amleh, E. Camouzis, G. Ladas, and M. Radin, Patterns of boundedness of a rational system in the plane, J. Difference Equ. Appl., 16 (2010), 1197--1236.

A. Brett, E. Camouzis, C. Lynd, and G. Ladas, On the boundedness character of a rational system, JNMaS, 1 (2009), 1--10.

E. Camouzis, Boundedness of solutions of a rational system of difference equations, Proceedings of the 14th International Conference on Difference Equations and Applications held in Instanbul, Turkey, July 21-25, 2008, Ugur-Bahcesehir University Publishing Company, Istanbul, Turkey, Difference Equations and Applications, ISBN 978-975-6437-80-3 (2009), 157--164 .

E. Camouzis, E. Drymonis, and G. Ladas, On the global character of the system $x_{n+1}=frac{alpha}{x_{n}+y_{n}} ;; text{and} ;; y_{n+1}=frac{y_{n}}{Bx_{n}+y_{n}} $, Commun. Appl. Nonlinear Anal., 16 (2009), 51--64.

E. Camouzis, E. Drymonis, and G. Ladas, Patterns of boundedness of the rational system $x_{n+1}=frac{alpha_{1}+beta_{1}x_{n}}{A_{1}+C_{1}y_{n}} ;; text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+B_{2}x_{n}+y_{n}}$, Fasc. Math., 44 (2010), 9--18.

E. Camouzis, E. Drymonis, and G. Ladas, Patterns of boundedness of the rational system $x_{n+1}=frac{alpha_1+beta_1 x_n}{A_{1}+B_{1} x_{n}+C_{1}y_{n}} ;; text{and} ;; y_{n+1}=frac{alpha_2+beta_2 x_{n}+gamma_2 y_{n}}{A_{2}+B_{2}x_{n}+C_{2}y_{n}} $, Commun. Appl. Nonlinear Anal., 18 (2011), 1--23.

E. Camouzis, E. Drymonis, G. Ladas, and W. Tikjha, Patterns of boundedness of the rational system $x_{n+1}=frac{alpha_{1}}{A_{1}+B_1 x_n+C_{1}y_{n}} ;; text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+B_{2}x_{n}+y_{n}}$, J. Difference Equ. Appl., 18 (2012), 89--110.

E. Camouzis, A. Gilbert, M. Heissan, and G. Ladas, On the boundedness character of the system $begin{array}{llll} x_{n+1}=frac{alpha_{1}+gamma_{1}y_{n}}{x_{n}} & text{and} & y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+x_{n}+y_{n}} end{array}$, Commun. Math. Anal., 7 (2009), 41--50.

E. Camouzis, C. M. Kent, G. Ladas, and C. D. Lynd, On the global character of solutions of the system

$x_{n+1}=frac{alpha_{1}+y_n}{ x_n} ;; text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+B_{2}x_{n}+C_2y_{n}} $, J. Difference Equ. Appl., (2011).

E. Camouzis, M. R. S. Kulenović, G. Ladas, and O. Merino, Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), 303--323.

E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman & Hall/CRC Press, November 2007.

E. Camouzis and G. Ladas, Global results on rational systems in the plane, I, J. Difference. Equ. Appl., 16 (2010), 975--1013.

E. Camouzis, G. Ladas, and L. Wu, On the global character of the system x_{n+1}=frac{alpha_{1}+gamma_{1}y_{n}}{x_{n}} ;; text{and} ;; y_{n+1}=frac{beta_{2}x_{n}+gamma_{2}y_{n}}{B_{2}x_{n}+C_{2}y_{n}}$, Int. J. Pure Appl. Math., 53 (2009), 21--36.

D. Clark and M. R. S. Kulenović, On a coupled system of rational difference equations}, Comput. Math. Appl., 43 (2002), 849--867.

D. Clark, M. R. S. Kulenović, and J. F. Selgrade, Global asymptotic behavior of a two dimensional difference equation modelling competition, Nonlinear Anal. TMA, 52 (2003), 1765--1776.

C. A. Clark, M. R. S. Kulenović, and J. F. Selgrade, On a system of rational difference equations}, J. Difference Equ. Appl., 11 (2005), 565--580.

J. M. Cushing, S. Levarge, N. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139--1152.

E. Drymonis, Y. Kostrov, and Z. Kudlak, On rational difference equations with nonnegative periodic coefficients, Int. J. Difference Equ., 7 (2012).

S. Elaydi, and R. J. Sacker, Global Stability of Periodic Orbits of Nonautonomous Difference Equations in Population Biology and the Cushing-Henson Conjectures, Proceedings of the Eighth International Conference on Difference Equations and Applications, Chapman $&$ Hall/CRC (2003), pp. 112--126.

M. Garić-Demirović, M. R. S. Kulenović and M. Nurkanović, Global behavior of four competitive rational systems of difference equations on the plane, Discrete Dyn. Nat. Soc., 2009, Art. ID 153058, 34 pp.

E. A. Grove, Y. Kostrov, M. A. Radin, and S. Schultz, On the global character of solutions of the system $x_{n+1}= frac{alpha_{1}}{x_{n}+y_{n}} text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}}{B_{2}x_{n}+y_{n}}$, Commun. Appl. Nonlinear Anal., 17 (2010), 69--81.

E.A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, 2005.

S. Kalabušić, M. R. S. Kulenović and E. Pilav, Global dynamics of a system of rational difference equations in the plane, Adv. Difference Equ., 2009, Art. ID 132802, 30 pp.

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.

M. R. S. Kulenović, G. Ladas, and W. S. Sizer, On the recursive sequence $x_{n+1}=frac{alpha x_n+beta x_{n-1}}{gamma x_n +C x_{n-1}}$, Math. Sci. Res. Hot-Line, 2 (5) (1998), 1--16.

M. R. S. Kulenović and O. Merino, Competitive-exclusion versus competitive-coexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141--1156.

M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations; with Open Problems and Conjectures}, Chapman & Hall/CRC Press, 2001.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of two dimensional linear fractional system of difference equations, Rad. Mat., 11 (2002), 59--78.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of a linear fractional system of difference equations, J. Inequal. Appl., (2005), 127--144.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of a competitive system of linear fractional difference equations}, Adv. Difference Equ., 3 (2006), 1--13.

G. Ladas, Open problems and conjectures, J. Difference Equ. Appl., 1 (4) (1995), 413--419.

G. Ladas, G. Tzanetopoulos, and A. Tovbis, On May's host parasitoid model}, J. Difference Equ. Appl., 2 (1996), 195--204.

G. Lugo and F. J. Palladino, On the boundedness character of rational systems in the plane, J. Difference Equ. Appl., (2011), 1--11

G. Lugo and F. J. Palladino, Private Communication.

E. Magnucka-Blandzi and J. Popenda, On the asymptotic behavior of a rational system of difference equations, J. Difference Equ. Appl., 5 (3) (1999), 271--286.

R. M. May, Host-Parasitoid system in patchy environments, A phenomenological model, Journal of Animal Ecology, 47 (1978), 833-843.

Downloads

Published

07.06.2024

How to Cite

Drymonis, E., & Ladas, G. (2024). On the Global Character of the Rational System $\boldsymbol{\displaystyle{ x_{n+1}=\frac{\alpha_1 }{A_1+ B_1 x_n + y_{n}} \quad \mathrm{AND} \quad y_{n+1}=\frac{\alpha_2+\beta_2 x_n}{A_2+B_2 x_n+C_2 y_n}}}$. Sarajevo Journal of Mathematics, 8(2), 293–309. https://doi.org/10.5644/SJM.08.2.10

Issue

Section

Articles