Open Problems and Conjectures on Rational Systems in Three Dimensions

Authors

  • G. Ladas University of Rhode Island, Department of Mathematics, Kingston, RI, USA
  • G. Lugo University of Rhode Island, Department of Mathematics, Kingston, RI, USA
  • F. J. Palladino University of Rhode Island, Department of Mathematics, Kingston, RI, USA

DOI:

https://doi.org/10.5644/SJM.08.2.11

Keywords:

Difference equation, global asymptotic stability, boundedness character, difference inequality, rational system

Abstract

We present some open problems and conjectures on Rational Systems in three dimensions, or higher, with nonnegative parameters and with nonnegative initial conditions such that the denominators are always positive. We also employ the method of Full Limiting Sequences to confirm an outstanding conjecture on $k^{th}$-order rational difference equations.

 

2000 Mathematics Subject Classification. 39A10, 39A11

Downloads

Download data is not yet available.

References

A. M. Amleh, E. Camouzis, and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3 (2008), 1--35.

A. M. Amleh, E. Camouzis, and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3 (2008), 195--225.

A. M. Amleh, E. Camouzis, G. Ladas, and M. Radin, Patterns of boundedness of a rational system in the plane, J. Difference Equ. Appl., 16 (2010), 1197--1236.

I. Bajo, Daniel Franco, and J. Peán, Dynamics of a rational system of difference equations in the plane, Adv. Difference Equ., 2011, Art. ID 958602, 17 pp.

S. Basu and O. Merino, Global behavior of solutions to two classes of second-order rational difference equations, Adv. Difference Equ., 2009, Art. ID 128602 27 pp.

S. Basu and O. Merino, On the global behavior of solutions to a planar system of difference equations, Comm. Appl. Nonlinear Anal., 16 (2009), 89-111.

A. Brett, E. Camouzis, C. Lynd, and G. Ladas, On the boundedness character of a rational system, JNMaS, 1 (2009), 1--10.

E. Camouzis, Boundedness of solutions of a rational system of difference equations, Proceedings of the 14th International Conference on Difference Equations and Applications held in Instanbul, Turkey, July 21-25, 2008, Ugur-Bahcesehir University Publishing Company, Istanbul, Turkey, Difference Equations and Applications, ISBN 978-975-6437-80-3 (2009), 157--164 .

E. Camouzis, E. Drymonis, and G. Ladas, On the global character of the system $x_{n+1}=frac{alpha}{x_{n}+y_{n}} ;; text{and} ;;

y_{n+1}=frac{y_{n}}{Bx_{n}+y_{n}} $, Commun. Appl. Nonlinear Anal., 16 (2009), 51--64.

E. Camouzis, E. Drymonis, and G. Ladas, Patterns of boundedness of the rational system $x_{n+1}=frac{alpha_{1}+beta_{1}x_{n}}{A_{1}+C_{1}y_{n}} ;; text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+B_{2}x_{n}+y_{n}}$, Fasc. Math., 44 (2010), 9--18.

E. Camouzis, E. Drymonis, G. Ladas, and W. Tikjha, Patterns of boundedness of the rational system $x_{n+1}=frac{alpha_{1}}{A_{1}+B_1 x_n+C_{1}y_{n}} ;; text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+B_{2}x_{n}+y_{n}}$, J. Difference Equ. Appl., (2011).

E. Camouzis, E. Drymonis, and G. Ladas, Patterns of Boundedness of the Rational System $x_{n+1}=frac{alpha_1+beta_1 x_n}{A_{1}+B_{1}x_{n}+C_{1}y_{n}} ;; text{and} ;; y_{n+1}=frac{alpha_2+beta_2 x_{n}+gamma_2 y_{n}}{A_{2}+B_{2} x_{n}+C_{2}y_{n}$, Communications on Applied Nonlinear Analysis, 18 (2011), 1--23.

E. Camouzis, A. Gilbert, M. Heissan, and G. Ladas, On the boundedness character of the system $begin{array}{llll} x_{n+1}=frac{alpha_{1}+gamma_{1}y_{n}}{x_{n}} & text{and} & y_{n+1}=frac{alpha_{2}+beta_{2} x_{n}+gamma_{2}y_{n} {A_{2}+x_{n}+y_{n}} end{array} $, Commun. Math. Anal., 7 (2009), 41--50.

E. Camouzis, C. M. Kent, G. Ladas, and C. D. Lynd, On the global character of solutions of the system $x_{n+1}=frac{alpha_{1}+y_n}{ x_n} ;; text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}+gamma_{2}y_{n}}{A_{2}+B_{2}x_{n}+C_2 y_{n}} $, J. Difference Equ. Appl., (2011).

E. Camouzis, M. R. S. Kulenović, G. Ladas, and O. Merino, emph{Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), 303--323.

E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman & Hall/CRC Press, November 2007.

E. Camouzis and G. Ladas, Global results on rational systems in the plane, I, J. Difference. Equ. Appl., 16 (2010), 975--1013.

E. Camouzis, G. Ladas, and L. Wu, On the global character of the system $x_{n+1}=frac{alpha_{1}+gamma_{1}y_{n}}{x_{n}} ;;

text{and} ;; y_{n+1}=frac{beta_{2} x_{n}+gamma_{2}y_{n}}{B_{2}x_{n}+C_{2}y_{n}}$, Int. J. Pure Appl. Math., 53 (2009), 21--36.

D. Clark and M. R. S. Kulenović, On a coupled system of rational difference equations, Comput. Math. Appl., 43 (2002), 849--867.

D. Clark, M. R. S. Kulenović, and J. F. Selgrade, Global asymptotic behavior of a two dimensional difference equation modelling competition, Nonlinear Anal. TMA, 52 (2003), 1765--1776.

C. A. Clark, M. R. S. Kulenović, and J.F. Selgrade, On a system of rational difference equations, J. Difference Equ. Appl., 11 (2005), 565--580.

A.S. Clark and J. Weiss, On the geometry of a four-parameter rational planar system of difference equations, J. Difference Equ. Appl., 18 (2012), 509--524.

J. M. Cushing, S. Levarge, N. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139--1152.

E. Dancer and P. Hess, Stability of fixed points for order preserving discrete-time dynamical systems, J. Reine Angew %Math. 419, 125--139, 1991.

E. Drymonis, Y. Kostrov, and Z. Kudlak, On rational difference equations with nonnegative periodic coefficients, Int. J. Difference Equ., 10 (2012).

M. Garić-Demirović, M. R. S. Kulenović, and M. Nurkanović, Global behavior of four competitive rational systems of difference equations on the plane, Discrete Dyn. Nat. Soc., 2009, Art. ID 153058, 34 pp.

E. A. Grove, Y. Kostrov, M. A. Radin, and S. Schultz, On the global character of solutions of the system $x_{n+1}= frac{alpha_{1}}{x_{n}+y_{n}} text{and} ;; y_{n+1}=frac{alpha_{2}+beta_{2}x_{n}}{B_{2}x_{n}+y_{n}}$, Commun. Appl. Nonlinear Anal., 17 (2010), 69--81.

E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, 2005.

S. Kalabusić and M. R. S. Kulenović, Dynamics of certain anti-competitive systems of rational difference equations in the plane, J. Difference Equ. Appl., 17 (2011), 1599--1615.

S. Kalabusić, M. R. S. Kulenović and E. Pilav, Global dynamics of a system of rational difference equations in the plane, Adv. Difference Equ., 2009, Art. ID 132802, 30 pp.

Y. S. Knopf and M. Huang, Global convergence properties of first-order homogeneous systems of rational difference equations, J. Difference Equ. Appl., DOI 10.1080/10236198.2011.590802, 25 pp.

V.L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.

M. R. S. Kulenović and O. Merino, Competitive-exclusion versus competitive-coexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141--1156.

M. R. S. Kulenović and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Int. J. Bifurcations Chaos, 20 (2010), 2471--2486.

M. R. S. Kulenović, O. Merino and M. Nurkanović, Global dynamics of certain competitive system in the plane, J. Difference Equ. Appl., 2011, DOI 10.1080/10236198.2011.605357, 16 pp.

M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations; with Open Problems and Conjectures, Chapman & Hall/CRC Press, 2001.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of two dimensional linear fractional system of difference equations, Rad. Mat., 11 (2002), 59-78.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of a linear fractional system of difference equations, J. Inequal. Appl., (2005), 127--144.

M. R. S. Kulenović and M. Nurkanović, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ., 3 (2006), 1--13.

G. Ladas, Open problems and conjectures, J.Difference Equ. Appl., 1 (4) (1995), 413--419.

G. Ladas, G. Tzanetopoulos, and A. Tovbis, On May's host parasitoid model, J. Difference Equ. Appl., 2 (1996), 195--204.

G. Lugo and F. J. Palladino, On a second-order rational difference equation and a rational system, 2012, arXiv:1202.0861v1.

G. Lugo and F. J. Palladino, On the boundedness character of rational systems in the plane. J. Difference Equ. Appl. (2011), 1--11

G. Lugo and F. J. Palladino, Unboundedness for some classes of rational difference equations, Int. J. Difference Equ., 4 (2009), 97--113.

G. Lugo and F. J. Palladino, Unboundedness results for fourth order rational difference equations, J. Differ. Equ. Appl., 18 (5) (2012), 879--893.

E. Magnucka-Blandzi and J. Popenda, On the asymptotic behavior of a rational system of difference equations, J. Difference Equ. Appl., 5 (3) (1999), 271--286.

O. Merino, Global attractivity of the equilibrium of a difference equation: an elementary proof assisted by computer algebra system, J. Difference Equ. Appl., 17 (2011), 33--41.

Downloads

Published

07.06.2024

How to Cite

Ladas, G., Lugo, G., & Palladino, F. J. (2024). Open Problems and Conjectures on Rational Systems in Three Dimensions. Sarajevo Journal of Mathematics, 8(2), 311–321. https://doi.org/10.5644/SJM.08.2.11

Issue

Section

Articles