The Global Character of Solutions of an Anti-competitive System of Rational Difference Equations
DOI:
https://doi.org/10.5644/SJM.08.2.12Keywords:
Difference equations, competitive maps, anti-competitive maps, global asymptotic stability, period-2 solutionsAbstract
In this paper, we analyze the global character of the solutions of an anti-competitive system of rational difference equations. We
prove that the solutions of the system can have three different types of global behavior, corresponding to different regions of the parameter space. Our analysis utilizes a global convergence theorem from Camouzis and Ladas, and two theorems from Kulenovi´c and Merino that apply to competitive systems.
2000 Mathematics Subject Classification. 39A10, 39A11
Downloads
References
E. Camouzis, M. R. S. Kulenovi´c, G. Ladas, and O. Merino, Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), 303–323.
E. Camouzis and G. Ladas Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman & Hall/CRC Press, 2008.
M. R. S. Kulenovi´c and O. Merino, Global bifurcation for discrete competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (1) (2009).
M. R. S. Kulenovi´c and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Int. J. Bifurcation Chaos, 20 (8) (2010).
A. Brett, E. Camouzis, G. Ladas, C. Lynd, On the boundedness character of a rational system, J. Numer. Anal. Stoch. Processes, (2009), 1–10.
E. Camouzis, E. Drymonis, and G. Ladas, On the global character of the system... , Commun. Appl. Nonlinear Anal., 16 (2009), 41–50.
E. Camouzis and G. Ladas, Global results on rational systems in the plane, Part I, J. Difference Equ. Appl., 14 (2009), p. 433–458.
D. Clark, M. R. S. Kulenovi´c, and J. F. Selgrade, On a system of rational difference equations, J. Difference Equ. Appl., 11 (2005), 565–580.
J. M. Cushing, Periodically forced nonlinear systems of difference equations, J. Difference Equ. Appl., 3 (1998), 547–561.
E. A. Grove, Y. Kostrov, M. A. Radin, and S. W. Schultz, On the Global Behavior..., Commun. Appl. Nonlinear Anal., 14 (2007), 35–56.
M. R. S. Kulenovi´c and M. Nurkanovic, Basins of attraction of an anti-competitive system of difference equations in the plane, Commun. Appl. Nonlinear Anal., 2 (2012), 41–53.
M. R. S. Kulenovi´c and M. Nurkanovic, Asymptotic behavior of a competitive system of linear fractional difference equations in the plane, J. Inequal. Appl., (2005), 127–144.
M. R. S. Kulenovi´c and O. Merino, Competitive exclusion vs. competitive coexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141–1156.
M. R. S. Kulenovi´c and O. Merino, A global attractivity result for maps with invariant boxes, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 97–110.
E. Magnucka-Blandzi and J. Popenda, On the asymptotic behavior of a rational system of difference equations, J. Difference Equ. Appl., 5 (1999), 271–286.
E. Camouzis, A. Gilbert, M. Heissan, and G. Ladas, On the boundedness character of the system ..., Commun. Appl, Nonlinear Anal., (2009), 41–50.
M. R. S. Kulenovi´c and G. Ladas, Dynamics of a Second Order Rational Difference Equation, Chapman & Hill/CRC Press, (2005).