Pencils of Euler Triples, I

Authors

  • Zvonko Čerin Zagreb, Croatia

DOI:

https://doi.org/10.5644/SJM.08.1.02

Keywords:

Ring, squares, $S(n)$-triple, Euler triple, pencil of Euler triples, basic symmetric functions, determinants, operations, cubes, commutative

Abstract

In this paper we will study the families of triples $(u,v,w)$ of elements in a commutative ring $r$ with the property that $v\,w+n=\widetilde{u}^2$, $w\,u+n=\widetilde{v}^2$ and $u\,v+n=\widetilde{w}^2$ for some $n, ...

 

2000 Mathematics Subject Classification. Primary 11B37, 11B39, 11D09

Downloads

Download data is not yet available.

References

A. Baker and H. Davenport, The equations $3,x^2-2=y^2$ and $8,x^2-7=z^2$, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129–137.

G. E. Bergum and V. E. Hoggatt, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart., 15 (1977), 323–330.

E. Brown, Sets in which $x,y+k$ is always a square, Math. Comput., 45 (1985), 613–620.

Z. Čerin and G. M. Gianella, On Diophantine triples from Pell and Pell-Lucas numbers, Acc. Sc. Torino - Atti Sci. Fis., 143 (2009), 83–94.

Z. Čerin and G. M. Gianella, On $D$(−4) and $D$(8) triples from Pell and Pell-Lucas numbers, Rend. Circ. Mat. Palermo Suppl. N., 81 (2009), 73–83.

Z. Čerin, On $D$(−1) and $D$(5) triples from Fibonacci and Lucas numbers, (preprint).

Z. Čerin, On extended Euler quadruples, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, to appear.

http://www.math.hr/˜duje/Diophantine m-tuples, References.html

A. Dujella, Generalized Fibonacci numbers and the problem of Diophantus, Fibonacci Quart., 34 (1996), 164–175.

L. Euler, Commentationes Arithmeticae I, In Opera Omnia, Series I, volume II, B.G. Teubner, Basel, 1915.

B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. (2), 27 (1976), 349–353.

L. Jones, A polynomial approach to a Diophantine problem, Math. Mag., 72 (1999), 52–55.

M. Radić, A definition of determinant of rectangular matrix, Glas. Mat., 1 (21) (1966), 17–22.

Downloads

Published

09.06.2024

How to Cite

Čerin, Z. (2024). Pencils of Euler Triples, I. Sarajevo Journal of Mathematics, 8(1), 15–31. https://doi.org/10.5644/SJM.08.1.02

Issue

Section

Articles