A Partial Stratification of Secant Varieties of Veronese Varieties via Curvilinear Subschemes

Authors

  • Edoardo Ballico Department of Mathematics, University of Trento, Povo (TN), Italy
  • Alessandra Bernardi GALAAD, INRIA M´editerran´ee, Antipolis, France

DOI:

https://doi.org/10.5644/SJM.08.1.03

Keywords:

Symmetric tensor rank, symmetric border rank, secant variety, join, Veronese variety, curvilinear schemes, CANDECOMP/PARAFAC

Abstract

We give a partial "quasi-stratification" of the secant varieties of the order $d$ Veronese variety $X_{m,d}$ of $\mathbb {P}^m$. It covers the set $\sigma _t(X_{m,d})^{\dagger}$ of all points lying on the linear span of curvilinear subschemes of $X_{m,d}$, but two "quasi-strata" may overlap. For low border rank two different "quasi-strata" are disjoint and we compute the symmetric rank of their elements. Our tool is the Hilbert schemes of curvilinear subschemes of Veronese varieties. To get a stratification we attach to each $P\in \sigma _t(X_{m,d})^{\dagger}$ the minimal label of a quasi-stratum containing it.

 

2000 Mathematics Subject Classification. 14N05, 15A69

Downloads

Download data is not yet available.

References

B. ˚Adlandsvik, Joins and higher secant varieties, Math. Scand., 61 (1987), 213–222.

J. Alexander and A. Hirschowitz, La m´ethode d’Horace ´eclat´ee: application `a l’interpolation en degr´ee quatre, Invent. Math., 107 (3) (1992), 585–602.

J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebr. Geom., 4 (2) (1995), 201–222.

J. Alexander and A. Hirschowitz, Generic hypersurface singularities, Proc. Indian Acad. Sci. Math. Sci., 107 (2) (1997), 139–154.

E. Acar and B. Yener, Unsupervised multiway data analysis: A literature survey, IEEE Transactions on Knowledge and Data Engineering, 21 (1) (2009), 6–20.

E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank, arXiv:1003.5157v2 [math.AG], Math. Z., .DOI : 10.1007/s00209-011-0907-6.

E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese variety via the symmetric rank, Preprint: arXiv:1005.3465v3 [math.AG].

A. Bernardi, M. V. Catalisano, A. Gimigliano and M. Id`a, Osculating varieties of Veronese varieties and their higher secant varieties, Canad. J. Math., 59 (3) (2007), 488–502.

A. Bernardi, A. Gimigliano and M. Id`a, Computing symmetric rank for symmetric tensors, J. Symb. Comput., 46 (2011), 34–55.

J. Brachat, P. Comon, B. Mourrain and E. P. Tsigaridas, Symmetric tensor decomposition, Linear Algebra Appl., 433 (11–12) (2010), 1851–1872.

M. C. Brambilla and G. Ottaviani, On the Alexander-Hirschowitz theorem, J. Pure Appl. Algebra, 212 (5) (2008), 1229–1251.

W. Buczy´nska and J. Buczy´nski, Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, arXiv:1012.3563 [math.AG].

J. Buczy´nski, A. Ginensky and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, arXiv:1007.0192v2 [math.AG].

M. V. Catalisano, A. V. Geramita and A. Gimigliano, On the secant varieties to the tangential varieties of a Veronesean, Proc. Amer. Math. Soc., 130 (4) (2002), 975–985.

K. Chandler, A brief proof of a maximal rank theorem for generic double points in projective space, Trans. Amer. Math. Soc., 353 (5) (2001), 1907–1920.

G. Comas and M. Seiguer, On the rank of a binary form, Found. Comp. Math., 11 (1) (2011), 65–78.

W. Deburchgraeve, P. Cherian, M. De Vos, R. Swarte, J. Blok, G. Visser, P. Govaert and S. Van Huffel, Neonatal seizure localization using PARAFAC decomposition, Clinical Neurophysiology, 120 (10) (2009), 1787–1796.

D. Eisenbud and J. Harris, Finite projective schemes in linearly general position, J. Algeb. Geom., 1 (1) (1992), 15–30.

J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math., 90 (1968), 511–521.

M. Granger, G´eom´etrie des sch´emas de Hilbert ponctuels, M´em. Soc. Math. France (N.S.) 2e s´erie, 8 (1983), 1–84.

A. Iarrobino, Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math., 15 (1972), 72–77.

J. M. Landsberg and Z. Teitler, On the ranks and border ranks of symmetric tensors, Found. Comput. Math., 10 (2010), 339–366.

L-H. Lim and P. Comon, Multiarray Signal Processing Tensor decomposition meets compressed sensing, Compte-Rendus de l’Academie des Sciences, section Mecanique, 338 (6) (2010), 311–320.

L.-H. Lim and V. De Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 31 (3) (2008), 1084–1127.

G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Gratton, L. De Lathauwer and S. Van Huffel, Detection of fast neuronal signals in the motor cortex from functional near infrared spetroscopy measurements using independent component analysis, Medical and Biological Engineering and Computing, 42 (1) (2004), 92–99.

Z. Ran, Curvilinear enumerative geometry, Acta Math., 155 (1–2) (1985), 81–101.

G. Tomasi and R. Bro, Multilinear models: interative methods, Comprehensive Chemometrics ed. Brown S. D., Tauler R., Walczak B, Elsevier, Oxford, United Kingdom, Chapter 2.22, (2009) 411–451.

Downloads

Published

09.06.2024

How to Cite

Ballico, E., & Bernardi, A. (2024). A Partial Stratification of Secant Varieties of Veronese Varieties via Curvilinear Subschemes. Sarajevo Journal of Mathematics, 8(1), 33–52. https://doi.org/10.5644/SJM.08.1.03

Issue

Section

Articles