Further Results on the Logarithmic Integral

Authors

  • Brian Fisher Department of Mathematics, University of Leicester, Leicester, England
  • Biljana Jolevska-Tuneska Faculty of Electrical Engineering and Informational Technologies, Skopje, Republic of Macedonia
  • Arpad Takači Faculty of Natural sciences, Novi Sad, Serbia

DOI:

https://doi.org/10.5644/SJM.08.1.06

Keywords:

Logarithmic integral, distribution, convolution, neutrix, neutrix convolution

Abstract

The logaritmic integral li$( x^r)$ and its associated functions li$ _+ ( x^r)$ and li$_-(x^r)$ are defined as locally summable functions on the real line and their derivatives are found as distributions. Some convolutions and neutrix convolutions of these functions and other functions are then found.

 

2000 Mathematics Subject Classification. 33B10, 46F10

Downloads

Download data is not yet available.

References

M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, p. 879, 1972.

J. G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math., 7 (1959-60), 291-398.

B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17 (1987), 119-135.

B. Fisher and B. Jolevska-Tuneska, On the logarithmic integral, Hacet. J. Math. Stat., 39 (3) (2010), 393-401.

B. Fisher, B. Jolevska-Tuneska and A.Takaci, On convolutions and neutrix convolutions involving the incomplete gamma function, Integral Transforms Spec. Funct., 15 (5) (2004), 404-415.

B. Jolevska-Tuneska and A. Takaci, Results on the commutative neutrix convolution of distributions, Hacet. J. Math. Stat., 37 (2)(2008), 135-141.

I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press Chap. 1, 1964.

D.S. Jones, The convolution of generalized functions, Quart. J. Math. Oxford (2), 24 (1973), 145-163.

Downloads

Published

09.06.2024

How to Cite

Fisher, B., Jolevska-Tuneska, B., & Takači, A. (2024). Further Results on the Logarithmic Integral. Sarajevo Journal of Mathematics, 8(1), 91–100. https://doi.org/10.5644/SJM.08.1.06

Issue

Section

Articles