Some Results on the Composition of Distributions
DOI:
https://doi.org/10.5644/SJM.08.1.09Keywords:
Distribution, Dirac delta-function, Heaviside function, composition of distributions, neutrix, neutrix limitAbstract
Let $F$ be a distribution, $f$ be a locally summable function and $F_{n} = (F * \delta_{n})(x)$, where $\delta_{n}(x)$ is a certain sequence converging to the Dirac delta-function $\delta(x)$. The distribution $F(f)$ is defined as the neutrix limit of the sequence $\{ F_n(f) \}$, provided its limit $h$ exists in the sense that $$ \Nn \int_{-\infty}^{\infty} F_{n}(f(x))\varphi (x) dx = \la h(x) , \varphi (x) \ra $$ for all test functions $\varphi(x)$ in ${\mathcal D}(a,b)$. The composition of the distributions $x_{-}^{-s}\ln x_{-}$ and $x_{+}^{r}$ is evaluated for $r=0,1, \ldots$ and the composition of the distributions $x_{-}^{-s}\ln^{m} x_{-}$ and $H(x)$ is evaluated for $s,m=1,2,\ldots\,$.
2000 Mathematics Subject Classification. 46F10
Downloads
References
P. Antosik, J. Mikusinski and R. Sikorski, Theory of Distributions, The Sequential Approach, PWN-Polish Scientific Publishers, Warsawa, 1973.
J. G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math., 7 (1959), 291–398.
H. G. Embacher, G. G¨urbl and M. Oberguggenberger, Product of distributions in several variables and applications to zero-mass QED2, Z. Anal. Anw., 11 (4) (1996), 437–454.
F. Farassat, Introduction to generalized function with applications in aerodynamics and aeroacoustics, NASA Technical Paper, 3428 (1996), 1–45.
B. Fisher, On defining the change of variable in distributions, Rostock Math. Kolloq., 28 (1985), 75–86.
B. Fisher,On defining the distribution $(x_{+}^{r})_{-}^{-s}$, Univ. u Novom Sadu Zb. Rad. Prirod.-
Mat. Fak. Ser. Mat., 15 (1) (1985), 119–128.
B. Fisher, A Kananthai, G. Sritanatana and K. Nonlaopon, The composition of the distributions $x_{-}^{-ms}ln x_{-}$ and $x_{+}^{r-p/m}$, Integral Transforms Spec. Funct., 16 (1) (2005), 13–19.
S. Gasiorowicz, Elementary Particle Physics, J. Wiley and Sons Inc. New York, 1996.
I. M. Gel’fand and G. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.
J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover Publications, Inc., New York, 1952.
H. Kau and B. Fisher, On the composition of distributions, Publ. Math. Debrecen, 28 (3–4) (1992), 279–290.
E. L. Koh and C. K. Li, On the distributions $delta^{k}$ and $(delta^{'})^{k}$, Math. Nachr., 157 (1992), 243–248.
Y. Jack Ng and H. van Dam, Neutrix calculus and quantum field theory, J. Phys. A: Math. Gen., 38 (2005), L317–L323.
E. Oz¸ca¯g, I. Ege and H. G¨ur¸cay, ¨ On powers of the Heaviside function for negative integers, J. Math. Anal. Appl., 326 (2007), 101–107.
L. Schwartz, The´orie des distributions, vols. I and II, Actualit´es Scientifiques et Industrielles, Hermann and Cie, Paris, 1957, 1959.