On Generalized Lipschitzian Semitopological Semigroup of Self-Mappings With Applications
DOI:
https://doi.org/10.5644/SJM.08.1.10Keywords:
Left reversible semitopological semigroup, p-uniformly convex Banach space, uniform normal structureAbstract
In this paper, we use a generalized Lipschitzian type condition for a semigroup of self-mappings as employed in Imdad and Soliman (Fixed Point Theory Appl. Vol. (2010), Article ID 692401, 1-14) to prove a fixed point theorem for a generalized Lipschitzian left reversible semitopological semigroup of self-mappings defined on a p-uniformly convex Banach space, besides indicating some possible applications to our main result. Our results generalize and extend some results due to J. S. Jung and B. S. Thakur (Inter. Jour. Math. Math. Sci., 28 (1)(2001), 41-50).
2000 Mathematics Subject Classification. 47H10, 54H25
Downloads
References
W. L. Bynum, Normal structure coefficients for Banach spaces, Pacific J. Math., 86 (1980), 427–436.
E. Casini and E. Maluta, Fixed point of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal., 9 (1) (1985), 103–108. MR 86m:47082.
D. J. Downing and W. O. Ray, Uniformly Lipschitzian semigroup in Hilbert space, Canad. Math. Bull., 25 (2) (1982), 210–214.
K. Gobel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math., 47 (1973), 135–140.
K.Goebel, W. A. Kirk and R. L. Thele, Uniformly Lipschitzian families of transformation in Banach spaces, Canad. J. Math., 26 (1974), 1245–1256.
J. S. Jung and B. S. Thakur, Fixed point theorems for generalized Lipschitzian semigroups, Inter. Jou. Math. Math. Sci., 28 (1) (2001), 41–50.
H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl., 127 (1) (1987), 206–210.
H. Ishihara, Fixed point theorems for Lipschitzian semigroups, Canad. Math. Bull., 32 (1) (1989), 90–97.
M. Imdad and A. H. Soliman, On uniformly generalized Lipschitzian mappings, Fixed point theory and applications, Volume (2010), Article ID 692401, 1–14.
E. A. Lifshitz, A fixed point theorem for operator in strongly convex spaces, Voronez. Gos. Univ. Trudy Mat. Fak., 16 (1975), 23–28.
T. C. Lim, On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math., 32 (2) (1980), 421–430.
T. C. Lim, On some $L^p$ inequalities in best approximation theory, J. Math. Anal. Appl., 154 (2) (1991), 523–528.
T. C. Lim, H. K. Xu and Z. B. Xu, Some $L^p$ inequalities and their applications to fixed point theory and approximation theory, Progress in approximation theory, Academic press, Massachusetts, 1991, pp. 609–621.
S. A. Pichugov, The Jung constant of the space Lp, Mat. Zametki, 43 (5) (1988), 604–614.
S. Prus, On Bynum’s fixed point theorem, Atti Sem. Mat. Fis. Univ. Modena, 38 (2) (1990), 535–545.
R. Smarzewski, On an inequality of Bynum and Drew, J. Math. Anal. Appl., 150 (1) (1990), 146–150.
A. H. Soliman, A fixed point theorem for semigroups on metric spaces with uniform normal structure, Sci. Math. Jpn., 69 (3) (2009), 323–328.
H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (12) (1991), 1127–1138.
C. Z˘alinescu, On uniformly convex functions, J. Math. Anal. Appl., 95 (2) (1983), 344–374.