Complexified Lie Algebroids From a Generalized Stieltjes Action Approach to the Calculus of Variations

Authors

  • Ahmad Rami El-Nabulsi Key Laboratory of Numerical Simulation of Sichuan Province and College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan, China
  • Guo-Cheng Wu Key Laboratory of Numerical Simulation of Sichuan Province and College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan, China
  • Mubasher Jamil Center for Advanced Mathematics and Physics, National University of Sciences and Technology H-12, Islamabad, Pakistan and Eurasian National University, Astana, Kazakhstan

DOI:

https://doi.org/10.5644/SJM.08.1.11

Abstract

In this work, we communicate the issue of Lie algebroids. More precisely, we discuss the subject based on the generalized Stieltjes fractal-like approach of the calculus of variations. We derived the corresponding Euler-Lagrange, geodesics and Wong’s equations and we illustrate then, by discussing, the resulted dynamics of a colored particle in Yang-Mills. Many motivating consequences are explored in particular, the emergence of complexified Lie algebroids with its corresponding complexified Lagrangian and Hamiltonian dynamics from the fractal approach.

 

2000 Mathematics Subject Classification. 49S05, 26A33, 20L05

Downloads

Download data is not yet available.

Author Biography

Ahmad Rami El-Nabulsi, Key Laboratory of Numerical Simulation of Sichuan Province and College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan, China




References

M. Klimek, Lagrangian fractional mechanics-a noncommutative approach, Czechoslovak J. Phys., 55 (11), (2005) 1447.

R. Almeida and D. F.M. Torres, Calculus of variations with fractional derivatives and fractional integrals, arXiv: 0907.1024 [math.OC].

O. P. Agrawal, Fractional variational calculus and the transversality conditions, J. Phys. A: Math. Gen., 39 (2006), 10375.

O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A, 40 (24) (2007), 6287.

T. M. Atanackovic, S. Konjik and S. Pilipovic, Variational problems with fractional derivatives: Euler Lagrange equations, J. Phys. A, Math. Theor., 41 (9) (2008), 095201.

D. Baleanu and Om. P. Agrawal, Fractional Hamilton formalism within Caputos derivative, Czechoslovak J. Phys., 56 (10–11) (2006), 1087.

R. A. El-Nabulsi and D. F. M. Torres, Fractional actionlike variational approach, J. Math. Phys., 49 (2008), 053521. 15

R. A. El-Nabulsi and D. F. M. Torres, Necessary optimality condition for fractional action-like variational approach with-Liouville derivatives of order (alfa,betta), Math. Meth. Appl. Sci., 30 (15) (2007), 1931.

J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advance in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.

D. Baleanu, B. Guvenc Ziya and J. A. Tenreiro, New Trends in Nanotechnology and Fractional Calculus Applications, Springer, 2009.

R. Hilfer, Application of fractional calculus in physics, World Scientific, Singapore, 2000.

R. Goreno and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, New York, 1997.

A. A. Kilbas, H. H. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, The Netherlands, 2006.

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic, New York, 1974.

K. S. Miller and B. Ross, An Introduction to the Fractional Integrals and DerivativesTheory and Application, Wiley, New York, 1993.

I. Podlubny, Fractional Differential Equations, Academic, New York, 1999.

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach, New York, 1993.

R. A. El-Nabulsi, A fractional approach of nonconservative Lagrangian dynamics, Fizika A, 14 (4) (2005), 289–298.

R. A. El-Nabulsi, A fractional action-like variational approach of some classical, quantum and geometrical dynamics, Int. J. Appl. Math., 17 (3) (2005), 299–317.

R. A. El-Nabulsi, Fractional quantum EulerCauchy equation in the Schrodinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics, Mod. Phys. Lett. B23, 28 (2010) 3369.

E. Martinez, Lagrangian mechanics on Lie algebroids, Acta. Appl. Math., 67 (3) (2001) 295–320.

E. Martinez, Geometric formulation of mechanics on Lie algebroids, in Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME 2, (2001), 209–222.

E. Martinez, Lie algebroids in classical mechanics and optimal control, SIGMA, Methods and Applications, 3 050 (2007), 1.

R. A. El-Nabulsi, Fractional Euler-Lagrange equations of order alpha-beta for Lie algebroids, Stud. Math. Sci., 1 (1) (2010), 13.

G. Ivan, M. Ivan and D. Opris, Fractional Euler-Lagrange and fractional Wong equations for Lie algebroids, Proceedings of the 4th International Colloquium Mathematics and Numerical Physics, October 6–8, 2006, Bucharest, Romania, pp. 73–80.

A. Weinstein, Lagrangian mechanics and groupoids, in Mechanics day (Waterloo, ON, 1992), Fields Institute Communications 7, American Mathematical Society, (1996) 207.

B. P. Kosyakov, The field of an arbitrarily moving color charge, Theor. Math. Phys., 87 (3) (1991), 632.

A. Weinstein, The integration problem for complex Lie algebroids, Progress in Mathematics, Birkhauser Boston, (2007) 93–109.

R. A. El-Nabulsi, Geometry of manifolds on Lie endomorphism and their duals under fractional action-like variational approach, Fizika A, 16 (3) (2007), 137–156.

J. C. Marrero, Hamiltonian dynamics on Lie algebroids, unimodularity and preservation of volumes, arXiv: 0905.0123. 16

A. C. da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley, Math. Lect. Notes 10, Amer. Math. Soc., (1999).

R. A. El-Nabulsi, Fractional variational problems from extended exponentially fractional integral, Appl. Math. Comput., 217 (22) (2011), 9492–9496.

R. A. El-Nabulsi, The fractional calculus of variations from extended Erdelyi-Kober operator, Int. J. Mod. Phys. B, 23 (16) (2009), 3349–3361.

R. A. El-Nabulsi, Universal fractional Euler-Lagrange equation from a generalized fractional derivate operator, Central Europ. J. Phys., 9 (1) (2010), 250–256.

R. A. El-Nabulsi, A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators, Appl. Math. Lett., 24 (10) (2011), 1647–1653.

R. A. El-Nabulsi, Extended fractional calculus of variations, complexified geodesics and Wongs fractional equation on complex place and Lie algebroids, Ann. Univ. Mariae Curie-Sklodowska, 1 (2011), 49–67.

K. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, (2005).

J. Cortes, M. de Leon, J. C. Marrero, D. Martin de Diego and E. Martinez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Meth. Mod. Phys, 3 (2006), 509–558.

J. Grabowski and P. Urbanski, Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195–208.

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics I, Implicit Lagrangian systems, J. Geom. Phys., 57 (1) (2006), 133–156.

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures, J. Geom. Phys., 57 (1) (2006), 209–250.

Downloads

Published

09.06.2024

How to Cite

El-Nabulsi, A. R., Wu, G.-C., & Jamil, M. (2024). Complexified Lie Algebroids From a Generalized Stieltjes Action Approach to the Calculus of Variations. Sarajevo Journal of Mathematics, 8(1), 143–158. https://doi.org/10.5644/SJM.08.1.11

Issue

Section

Articles