Dynamics of an Anti-competitive Two Dimensional Rational System of Difference Equations

Authors

  • M. Garić-Demirović Department of Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • M. Nurkanović Department of Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.07.1.05

Keywords:

Difference equations, anti-competitive, map, stability, stable manifold

Abstract

We investigate the global asymptotic behavior of solutions of the following anti-competitive system of rational difference equations
\begin{equation*}
x_{n+1}=\frac{\gamma _{1}y_{n}}{A_{1}+x_{n}}+h,\quad
y_{n+1}=\frac{\beta _{2}x_{n}}{A_{2}+y_{n}},\quad n=0,1,\dots,
\end{equation*}
where the parameters $\gamma _1,\beta _2,A_{1},A_{2}$ and $h$ are positive numbers and the initial conditions $x_{0},y_{0}$ are arbitrary nonnegative numbers.

 

2000 Mathematics Subject Classification. 39A10, 39A11

Downloads

Download data is not yet available.

References

A. Brett, M. Gari´c-Demirovi´c, M. R. S. Kulenovi´c and M. Nurkanovi´c, Global behavior of two competitive rational systems of difference equations in the plane, Commun. Appl. Nonlinear Anal., 16 (2009), 1–18.

E. Camouzis, M. R. S. Kulenovi´c, G. Ladas and O. Merino, Rational systems in the plane - open problems and conjectures, J. Difference Equ. Appl., 15 (2009), 303–323.

D. Clark and M. R. S. Kulenovi´c, On a coupled system of rational difference equations, Comput. Math. Appl., 43 (2002), 849–867.

D. Clark, M. R. S. Kulenovi´c and J. F. Selgrade, Global asymptotic behavior of a two dimensional difference equation modelling competition, Nonlinear Anal., TMA, 52 (2003), 1765–1776.

C. A. Clark, M. R. S. Kulenovi´c and J.F. Selgrade, On a system of rational difference equations, J. Difference Equ. Appl., 11 (2005), 565 – 580.

M. Garic-Demirovi´c, M. R. S. Kulenovi´c and M. Nurkanovi´c, Global behavior of four competitive rational systems of difference equations in the plane, Discrete Dyn. Nat. Soc., (2009), Article ID 153058, 34 pages .

M. P. Hassell and H. N. Comins, Discrete time models for two-species competition, Theor. Popul. Biol., 9 (1976), 202–221.

M. Hirsch and H. Smith, Monotone Dynamical Systems, Handbook of Differential Equations, Ordinary Differential Equations, (second volume), 239–357, Elsevier B. V., Amsterdam, 2005.

S. Kalabuˇsi´c and M.R.S. Kulenovi´c, Dynamics of certain anti-competitive systems of rational difference equations in the plane, J. Difference Equ. Appl., (2010) (to appear).

S. Kalabuˇsi´c, M.R.S. Kulenovi´c and E. Pilav, Anti-competitive systems. General results, (submited). [11] M. R. S. Kulenovi´c and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, Boca Raton, London, 2001.

M. R. S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman and Hall/CRC, Boca Raton, London, 2002.

M. R. S. Kulenovi´c and O. Merino, Competitive-exclusion versus competitivecoexistence for systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1141–1156.

M. R. S. Kulenovi´c and O. Merino, A global attractivity result for maps with invariant boxes, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 97–110.

M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of two dimensional linear fractional system of difference equations, Rad. Mat., 11 (2002), 59–78.

M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of a competitive system of linear fractional difference equations, J. Ineq. Appl., (2005), 127–144.

M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of a system of linear fractional difference equations, Adv. Difference Equ., (2006), 1–13.

C. Robinson, Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995.

J. F. Selgrade and M. Ziehe, Convergence to equilibrium in a genetic model with differential viability between the sexes, J. Math. Biol., 25 (1987), 477–490.

H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335–357.

H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biology, 53 (2006), 747–758.

Downloads

Published

10.06.2024

How to Cite

Garić-Demirović, M., & Nurkanović, M. (2024). Dynamics of an Anti-competitive Two Dimensional Rational System of Difference Equations. Sarajevo Journal of Mathematics, 7(1), 39–56. https://doi.org/10.5644/SJM.07.1.05

Issue

Section

Articles