Hereditarily Irreducible Mappings of Cartesian Product of Continua
DOI:
https://doi.org/10.5644/SJM.07.1.11Keywords:
Cartesian product, hereditarily irreducible mappingAbstract
In Section 2 we shall prove that if Cartesian product $X\times Y$ of nondegenerate continua admits a hereditarily irreducible mapping $f:X\times Y\rightarrow Z,$ then w$(X\times Y)$=w$(Z)$.
The main section of the paper, Section 3, contains theorems concerning the Whitney maps on continua. In particular, it is proved that the product $\Pi \{X_{s}:s\in S\}$ of nondegenerate continua admits a Whitney map for $C(\Pi \{X_{s}:s\in S\})$ if and only if it is metrizable.
2000 Mathematics Subject Classification. Primary 54B20, 54F15
Downloads
References
J. J. Charatonik and W. J. Charatonik, Whitney maps–a non-metric case, Colloq. Math., 83 (2000), 305–307.
R. Engelking, General Topology, PWN, Warszawa, 1977.
A. Illanes and S.B. Nadler, Jr., Hyperspaces: Fundamentals and Recent advances, Marcel Dekker, New York-Basel 1999.
I. Lonˇcar, A note on the spaces which admit a Whitney map, Rad Hrvatske akademije znanosti i umjetnosti, Matematiˇcke znanosti, 491 (2005), 195–206.
I. Lonˇcar, A fan X admits a Whitney map for C(X) iff it is metrizable, Glas. Mat., 38 (58) (2003), 397–413.
S. B. Nadler, Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.
S. B. Nadler, Continuum Theory, Marcel Dekker, Inc., New York, 1992.