Almost $\eta$-conformal Ricci solitons in $(LCS)_{3}$-manifolds

Authors

  • Mohd Danish Siddiqi
  • Sudhakar K. Chaubey

DOI:

https://doi.org/10.5644/SJM.16.02.10

Keywords:

Almost η-conformal Ricci solitons, (LCS)3-manifold, η-conformal gradient shrinking Ricci soliton, quasi Einstein manifold

Abstract

The aim of the present paper is to study the properties of three dimensional Lorentzian concircular structure manifolds ($(LCS)_{3}$-manifolds) endowed with almost $\eta$-conformal Ricci solitons. Also, we discuss the $\eta$-conformal gradient shrinking Ricci solitons on $(LCS)_{3}$-manifolds. Finally, the examples of almost $\eta$-conformal Ricci soliton on an $(LCS)_{3}$-manifold are provided in the region where $(LCS)_{3}$-manifold is expanding.

Downloads

Download data is not yet available.

Downloads

Published

04.03.2022

How to Cite

Siddiqi, M. D. ., & Chaubey, S. K. (2022). Almost $\eta$-conformal Ricci solitons in $(LCS)_{3}$-manifolds. Sarajevo Journal of Mathematics, 16(2), 245–259. https://doi.org/10.5644/SJM.16.02.10

Issue

Section

Articles