A Strict Fixed Point Problem for $\delta$-Asymptotically Regular Multifunctions and Well-Posedness

Authors

  • Mohamed Akkouchi Université Cadi Ayyad, Faculté des Sciences-Semlalia, Département de Mathématiques, Marrakech, Maroc, Morocco

DOI:

https://doi.org/10.5644/SJM.07.1.12

Keywords:

Strict fixed point of a multifunction, well-posedness of strict fixed point problem, $\delta$-asymptotically regular multifunctions, $T$-orbitally complete metric spaces, compact metric spaces

Abstract

In 2005, Lj. Ćirić has established a fixed point theorem for asymptotically regular selfmappings of complete metric spaces. The purpose of this paper is to extend this theorem to the case of $\delta$-asymptotically regular multifunctions on an orbitally complete metric space $X$ which satisfy a variant of Ćirić's contractive condition. The well-posedness of the strict fixed point problem of these multifunctions is studied. We provide also a general result when the metric space $X$ is compact. Our results are natural extensions to some recent results of Lj. B. Ćirić and some old results obtained by Sharma and Yuel and Guay and Singh.

 

2000 Mathematics Subject Classification. 54H25, 47H10

Downloads

Download data is not yet available.

References

M. Akkouchi and V. Popa, Well-posedness of fixed point problem for mappings satisfying an implicit relation, (To appear, Demonstratio Math. 2010).

S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133–181.

F. E. Browder and W. V. Petrysyn, The solution by iteration of nonlinear functional equation in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571–576.

Lj. B. Ciri´c, ´ On some maps with non-unique fixed points, Publ. Inst. Math. (Beograd), 13 (31) (1974), 52–58.

Lj. B. Ciri´c, ´ Generalized contractions and fixed point theorems, Publ. Inst. Math. (Beograd), 12 (26) (1971), 19–26.

Lj. B. Ciri´c, ´ Fixed points of asymptotically regular mappings, Math. Commun., 10 (2005), 111–114.

F.S. De Blasi and J. Myjak, Sur la porosit´e des contractions sans point fixe, C. R. Acad. Sci. Paris, 308 (1989), 51–54.

B. Fisher, Common fixed points of mappings and set valued mappings, Rostock Math. Kolloq., 18 (1981), 69–77.

B. Fisher, Common fixed points on a metric space, Kyungpook Math. J., 25 (1985), 35–42.

B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting mappings, Period. Math. Hung., 20 (3) (1989), 207–218.

B.K. Lahiri and P. Das, Well-posednes and porosity of certain classes of operators, Demonstratio Math., 38 (2005) 170–176.

M. D. Guay, and K. L. Singh, Fixed points of asymptotically regular mappings, Mat. Vesnik., 35 (1983), 101–106.

V. Popa, Well-posedness of fixed point problem in orbitally complete metric spaces, Stud. Cerc. St. Ser. Mat. Univ. Bacˇau, 16 (2006), Suppl. 209–214.

V. Popa, Well-posedness of fixed point problem in compact metric spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz., 60 (1) (2008), 1–4.

S. Reich and A. J. Zaslavski, Well-posednes of fixed point problems, Far East J. Math. Sci., Special volume 2001, Part III, 393–401

P. L. Sharma A. K. Yuel, Fixed point theorems under asymptotic regularity at a point, Math. Sem. Notes, 35 (1982), 181–190.

D. Turkoglu, O. Ozer and B. Fisher, Fixed point theorems for T-orbitally complete spaces, Stud. Cerc. St. Ser. Mat., Univ. Bacˇau, 9 (1999), 211–218.

Downloads

Published

10.06.2024

How to Cite

Akkouchi, M. (2024). A Strict Fixed Point Problem for $\delta$-Asymptotically Regular Multifunctions and Well-Posedness. Sarajevo Journal of Mathematics, 7(1), 123–133. https://doi.org/10.5644/SJM.07.1.12

Issue

Section

Articles