Convolutions of Bernoulli and Euler Polynomials

Authors

  • Wenchang Chu Dipartimento di Matematica, Universit´a del Salento, Lecce, Italy
  • Roberta R. Zhou School of Mathematical Sciences, Dalian University of Technology, Dalian, P. R. China

DOI:

https://doi.org/10.5644/SJM.06.2.01

Keywords:

Bernoulli polynomial, Euler polynomial, Generating function

Abstract

By means of the generating function technique, several convolution identities are derived for the polynomials of Bernoulli and Euler.

 

2000 Mathematics Subject Classification. Primary 11B68, Secondary 05A15

Downloads

Download data is not yet available.

References

M. Abramowitz – I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, NewYork, 1972.

T. Agoh – K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory, 124 (2007), 105–122.

G. S. Cheon, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16 (3) (2003), 365–368.

W. Chu – P. Magli, Summation formulae on Reciprocal Sequences, Eur. J. Comb., 28 (3) (2007), 921–930.

W. Chu – C. Y. Wang, Arithmetic identities involving Bernoulli and Euler numbers, Results Math., 55 (1-2) (2009), 65–77.

W. Chu – C. Y. Wang, Convolution formulae for Bernoulli numbers, Integral Transforms Spec. Funct., 21 (6) (2010), 437–457.

L. Comtet, Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974.

K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory, 60 (1996), 23-41.

G. V. Dunne – C. Schubert, Bernoulli number identities from quantum field theory, preprint: arXiv:math.NT/0406610, 2004.

I. M. Gessel, On Miki’s identity for Bernoulli numbers, J. Number Theory, 110 (2005), 75–82.

R. L. Graham – D. E. Knuth – O. Patashnik, Concrete Mathematics (second edition, Addison-Wesley Publ. Company, Reading, MA, 1994.

E. R. Hansen, A Table of Series and Products, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.

K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, 2000.

H. M. Srivastava – A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17 (2004), 375–380.

H. S. Wilf, Generatingfunctionology (second edition), Academic Press Inc., London, 1994.

Downloads

Published

11.06.2024

How to Cite

Chu, W., & Zhou, R. R. (2024). Convolutions of Bernoulli and Euler Polynomials. Sarajevo Journal of Mathematics, 6(2), 147–163. https://doi.org/10.5644/SJM.06.2.01

Issue

Section

Articles