Convolutions of Bernoulli and Euler Polynomials
DOI:
https://doi.org/10.5644/SJM.06.2.01Keywords:
Bernoulli polynomial, Euler polynomial, Generating functionAbstract
By means of the generating function technique, several convolution identities are derived for the polynomials of Bernoulli and Euler.
2000 Mathematics Subject Classification. Primary 11B68, Secondary 05A15
Downloads
References
M. Abramowitz – I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, NewYork, 1972.
T. Agoh – K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory, 124 (2007), 105–122.
G. S. Cheon, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett., 16 (3) (2003), 365–368.
W. Chu – P. Magli, Summation formulae on Reciprocal Sequences, Eur. J. Comb., 28 (3) (2007), 921–930.
W. Chu – C. Y. Wang, Arithmetic identities involving Bernoulli and Euler numbers, Results Math., 55 (1-2) (2009), 65–77.
W. Chu – C. Y. Wang, Convolution formulae for Bernoulli numbers, Integral Transforms Spec. Funct., 21 (6) (2010), 437–457.
L. Comtet, Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974.
K. Dilcher, Sums of products of Bernoulli numbers, J. Number Theory, 60 (1996), 23-41.
G. V. Dunne – C. Schubert, Bernoulli number identities from quantum field theory, preprint: arXiv:math.NT/0406610, 2004.
I. M. Gessel, On Miki’s identity for Bernoulli numbers, J. Number Theory, 110 (2005), 75–82.
R. L. Graham – D. E. Knuth – O. Patashnik, Concrete Mathematics (second edition, Addison-Wesley Publ. Company, Reading, MA, 1994.
E. R. Hansen, A Table of Series and Products, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.
K. H. Rosen, Handbook of Discrete and Combinatorial Mathematics, CRC Press, Boca Raton, 2000.
H. M. Srivastava – A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett., 17 (2004), 375–380.
H. S. Wilf, Generatingfunctionology (second edition), Academic Press Inc., London, 1994.