Uniform Convergence of Fourier Series on Compact Subsets

Authors

  • M. Kucukaslan Mersin University, Faculty of Science and Literature, Department of Mathematics, Turkey
  • F. G. Abdullayev Mersin University, Faculty of Science and Literature, Department of Mathematics, Turkey

DOI:

https://doi.org/10.5644/SJM.06.2.05

Keywords:

Approximation by polynomials, orthogonal polynomials, Fourier series, analytic weight functions

Abstract

In this paper, the speed of approximation of $\omega _{n}(B;f,z)$ to zero has been calculated by using analytic and geometric properties of the boundary of the given region, where $B$ is a subset of $G$ (a finite simpy connected domain bounded by a Jordan curve) and $\omega _{n}=\left\vert
f(z)-S_{n}(f,z)\right\vert ,~z\in B.$

 

2000 Mathematics Subject Classification. 41A10, 30E10, 42A16

Downloads

Download data is not yet available.

References

F. G. Abdullayev and V. V. Andrievskii, On orthogonal polynomials over domains with K–quasiconformal boundary, Izv. Akad. Nauk. Azerb. SSR. Ser. F.T.M., 1 (1983), 3–7.

F. G. Abdullayev, Uniform convergenge of the generalized Bieberbach polynomials in regions with non-zero angles, Acta Math. Hung., 77 (3) (1997), 223–246.

F. G. Abdullayev, Uniform convergence of the Bieberbach polynomials inside and on the closure of domains in the complex plane, East J. Approx., 7 (1) (2001), 77–101.

F. G. Abdullayev and M. Kucukaslan, On the convergence of the Fourier series of orthonormal polynomials in the domain with piecewise smooth boundary, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 14 (2001), 3–9.

L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princton, N.J: Van Nostrand, (1966).

V. V. Andrievskii, Uniform Convergence of Bieberbach Ppolynomials in Domains with Piecewise Quasiconformal Boundary, In: Theory of Mappings and Approximations of Functions, (G.D. Suvarov ed.), Naukova Dumka, Kiev, (in Russian) (1983).

V. V. Andrievskii and H. P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer Verlag, (2001).

V. V. Andrievskii and I. E. Pristker, Convergence of Bieberbach polynomials in domains with interior cusps, J. Anal. Math., 82 (2000), 315–332.

D. Gaier, On the convergence of the Bieberbach polynomials inside the domain: Research Problems 97-1, Constr. Approx., 13 (1997), 153–154.

M. K¨u¸c¨ukaslan, T. Tun¸c and F. G. Abdullayev, Convergence of Bieberbach polynomials inside domains of the complex plane, Bull. Belg. Math. Soc., 13 (2006), 657–671.

F. D. Lesley, H¨older continuity of conformal mappings at the boundary via the strip method, Indiana Univ. Math. J., 31 (1982), 341–354.

F. D. Lesley, Conformal mappings of domains satisfiying wedge conditions, Proc. Amer. Math. Soc., 93 (1985), 483–488.

O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer Verlag Berlin, (1973).

C. N. Mergelyan, On the completeness of systems of analytic functions, Usp. Math. Nauk., 8, No.4 (56) (1953), 3–63.

S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn., Series A I. Math., 395 (1966).

V. I. Simirnov and N. A. Lebedev, Functions of Complex Variable Constructive Theory, MIT Press, Moskow, (in Russian) (1963).

P. K. Suetin, Polynomials Orthogonal over a Region and Bieberbach Polynomials, Proc. Steklov Inst. Math., vol.100, Providence RI: Amer. Math. Soc., (1971).

Downloads

Published

11.06.2024

How to Cite

Kucukaslan, M., & Abdullayev, F. G. (2024). Uniform Convergence of Fourier Series on Compact Subsets. Sarajevo Journal of Mathematics, 6(2), 203–215. https://doi.org/10.5644/SJM.06.2.05

Issue

Section

Articles