Quasi-Diagonal Operators
DOI:
https://doi.org/10.5644/SJM.06.2.07Keywords:
Quasi-diagonal operatorsAbstract
Let $H$ be a separable complex Hilbert space and let $B(H)$ denote the algebra of all bounded linear operators on $H.$ If $T$ is a quasi-normal Fredholm operator we prove that $TT^*\in (QD)(P_n)$ if and only if $T^*T\in (QD)(P_n).$ We also show that if $T$ is quasi-normal and $T(T^*T)$ is quasi-diagonal with respect to any sequence $(P_n)$ in $PF(H),$ such that $P_n\rightarrow I$ strongly, then $T=N+K,$ where $N$ is a normal operator and $K$ is a compact operator.
2000 Mathematics Subject Classification. 47Bxx, 47B20
Downloads
References
D. A. Herrero, Approximation of Hilbert Space Operators, I., Research Notes in Math., Vol.72 (London-Boston-Melbourne: Pitman Books Ltd.,1982).
P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton 1967.
P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970), 887–933.
Muhib R. Lohaj, Necessary conditions for quasidiagonality of some special nilpotent operators, Rad. Mat., 10 (2001),209–217.
G. R. Luecke, A note on quasidiagonal and quasitriangular operators, Pacific. J. Math., 56 (1975), 179–185.
Carl M. Pearcy, Some recent developments in operator theory, Conference Board Math. Sci., Vol 36, 1978.
R. A. Smucker, Quasidiagonal and Quasitriangular Operators, Disertation, Indiana Univ., 1973.
R. A. Smucker, Quasidiagonal weighted shifts, Pacific. J. Math., 98 (1982), 173–182.