On the Cohomology of Spaces of Links and Braids via Configuration Space Integrals

Authors

  • Ismar Volić Department of Mathematics, Wellesley College, Wellesley, MA, USA

DOI:

https://doi.org/10.5644/SJM.06.2.09

Keywords:

Bott-Taubes integrals, configuration space integrals, spaces of links, finite type invariants, Fulton-MacPherson compactification

Abstract

We study the cohomology of spaces of string links and braids in...

 

2000 Mathematics Subject Classification. Primary: 57M27; Secondary: 81Q30, 57R40

Downloads

Download data is not yet available.

References

Scott Axelrod and I. M. Singer, Chern-Simons perturbation theory. II, J. Differ. Geom., 39 (1) (1994), 173–213.

Dror Bar-Natan, Perturbative aspects of the Chern-Simons topological quantum field theory, Ph.D. thesis, Princeton University (1991).

, On the Vassiliev knot invariants, Topology, 34 (2) (1995), 423–472.

, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications, 4 (1) (1995), 13–32.

Raoul Bott and Clifford Taubes, On the self-linking of knots, J. Math. Phys., 35 (10) (1994), 5247–5287, Topology and physics.

Ryan Budney, Little cubes and long knots, Topology, 46 (1) (2007), 1–27.

Alberto S. Cattaneo, Paolo Cotta-Ramusino, and Riccardo Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol., 2 (2002), 949–1000 (electronic).

, Algebraic structures on graph cohomology, J. Knot Theory Ramifications, 14 (5) (2005), 627–640.

F. R. Cohen and S. Gitler, On loop spaces of configuration spaces, Trans. Amer. Math. Soc., 354 (5) (2002), 1705–1748 (electronic).

William Fulton and Robert MacPherson, A compactification of configuration spaces, Annal. Math. (2), 139 (1)(1994), 183–225.

E. Guadagnini, M. Martellini, and M. Mintchev, Chern-Simons Field Theory and Link Invariants, Knots, topology and quantum field theories (Florence, 1989), World Sci. Publ., River Edge, NJ, 1989, pp. 95–145.

Nathan Habegger and Xiao-Song Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc., 3 (2) (1990), 389–419.

R. Hardt, P. Lambrechts, V. Turchin, and I. Voli´c, Real homotopy theory of semialgebraic sets, in preparation, draft available at http://palmer.wellesley.edu/~ivolic/pages/papers.html.

Toshitake Kohno, Loop spaces of configuration spaces and finite type invariants, Invariants of knots and 3-manifolds (Kyoto, 2001), Geom. Topol. Monogr., vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. 143–160 (electronic).

Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkh¨auser, Basel, 1994, pp. 97–121.

, Operads and motives in deformation quantization, Lett. Math. Phys., 48 (1) (1999), 35–72, Mosh´e Flato (1937–1998).

Maxim Kontsevich and Yan Soibelman, Deformations of Algebras Over Operads and the Deligne Conjecture, Conf´erence Mosh´e Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307.

Robin Koytcheff, A homotopy-theoretic view of Bott-Taubes integrals and knot spaces, Algebr. Geom. Topol., 9 (3) (2009), 1467–1501.

Pascal Lambrechts, Victor Turchin, and Ismar Voli´c, The rational homology of spaces of long knots in codimension > 2, Geom. Topol., 14 (2010), 2151–2187.

Riccardo Longoni, Nontrivial classes in H∗(Imb(S1, Rn)) from nontrivalent graph cocycles, Int. J. Geom. Methods Mod. Phys., 1 (5) (2004), 639–650.

John Milnor, Link groups, Annal. Math. (2), 59 (1954), 177–195.

Brian A. Munson and Ismar Voli´c, Cosimplicial models for spaces of links, submitted.

, Multivariable manifold calculus of functors, submitted.

Keiichi Sakai, Configuration space integrals for embedding spaces and the Haefliger invariant, arXiv: 0811.3726.

---------, Nontrivalent graph cocycle and cohomology of the long knot space, Algebr. Geom. Topol., 8 (3)(2008), 1499–1522.

Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Sel. Math. New Ser., 10 (3) (2004), 391–428.

Dylan Thurston, Integral expressions for the Vassiliev knot invariants, arXiv:-math.AT/0701350.

V. A. Vassiliev, Cohomology of Knot Spaces, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23–69.

Ismar Voli´c, Configuration space integrals and Taylor towers for spaces of knots, Topology Appl., 153 (15) (2006), 2893–2904.

---------, Finite type knot invariants and the calculus of functors, Compos. Math., 142 (1) (2006), 222–250.

---------, A survey of Bott-Taubes integration, J. Knot Theory Ramifications, 16 (1) (2007), 1–42.

Downloads

Published

11.06.2024

How to Cite

Volić, I. (2024). On the Cohomology of Spaces of Links and Braids via Configuration Space Integrals. Sarajevo Journal of Mathematics, 6(2), 241–263. https://doi.org/10.5644/SJM.06.2.09

Issue

Section

Articles