Non-additive Measures, Envelopes and Extensions to Quasi-Measures
DOI:
https://doi.org/10.5644/SJM.06.1.03Keywords:
semi-continuous measure, locally complete and $\sigma$-continuous lattices, $\sigma$-complete $D$-poset, modularity, null-additiveAbstract
In the present paper, we introduce the notions of lower envelope and upper envelope for a [0, $\infty$]-valued function $\mu$ defined on a proper sublattice $M$ of a locally complete $\sigma$-continuous lattice $L$, and we extend a finite-stable, supermodular usc-measure $\mu$ on a proper sublattice $M$ of $L$ to a quasi$^{*}$-measure (i.e., a supermodular usc-measure) on $L,$ which is $M_{\delta}$-inner regular. Analogously, we extend a submodular lsc-measure on $M$ to a quasi$_{*}$-measure (i.e., a submodular lsc-measure) on $L,$ which is $M_{\sigma}$-outer regular. Furthermore, we have studied notions of measuring envelopes in $D$-lattices in the context of null-additive, converse null-additive, superadditive and weak converse null-additive functions.
2000 Mathematics Subject Classification. 28A12, 28C15, 28B10
Downloads
References
M. Akian, Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc., 351 (11) (1999), 4515–4543.
W. Adamski, Tight set functions and essential measure, Lecture Notes in Math., 945 Springer-Verlag, 1981.
E. M. Alfsen, Order theoretic foundations of integration, Math. Annalen, 149 (1963), 419–461.
A. Avallone and A. De Simone, Extensions of modular functions on orthomodular lattices, Ital. J. Pure Appl. Math., 9 (2001), 109–122.
A. Avallone, A. De Simone and P. Vitolo, Effect algebras and extensions of measures, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 9-B(8) (2006), 423–444.
G. Barbieri and H. Weber, Measures on clans and MV-algebras, In, Handbook of Measure Theory, Ed.: E. Pap, Volume II, Elsevier, 2002, pp. 911–945.
M. K. Bennett and D. Foulis, Effect algebra and unsharp quantum logics, Found. Phys., 24 (1994), 1331–1352.
C. C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc., 88 (1958), 467–490.
A. Dvureˇcenskij and S. Pulmannov´a, Difference posets effects and quantum measurements, Int. J. Theor. Phys., 33 (1994), 819–850.
A. Dvureˇcenskij and S. Pulmannov´a, New Trends in Quantum Structures, Kluwer Acad. Pub., 2000.
P. R. Halmos, Measure Theory, Van Nostrand, Princeton, NJ, 1950.
D. A. Kappos, Measure theory on orthocomplemented posets and lattices, In: Measure theory, Oberwolfach, Proceedings, Springer, Berlin, Lect. Notes Math., 541 (1975), 323–343.
F. Kˆopka and F. Chovanec, D-posets, Math. Slovaca, 44 (1994), 21–34.
M. Khare and S. Gupta, Valuation and metric on a lattice effect algebra, Demonstratio Math., 41 (2) (2008), 249–258.
M. Khare and S. Gupta, Relations between various continuity concepts in effect algebras, Demonstratio Math., 41 (3) (2008), 507–518.
M. Khare and S. Gupta, Extension of nonadditive measures on locally complete σcontinuous lattices, Novi Sad J. Math., 38 (2) (2008), 15–23.
M. Khare and S. Roy, Conditional entropy and the Rokhlin metric on an orthomodular lattice with Bayessian state, Int. J. Theor. Phys., 47 (5) (2008), 1386–1396.
M. Khare and B. Singh, Weakly tight functions and their decomposition, Int. J. Math. Math. Sci., 18 (2005), 2991–2998.
M. Khare and A. K. Singh, Weakly tight functions, their Jordan type decomposition and total variation in effect algebras, J. Math. Anal. Appl., 344 (1) (2008), 535–545.
M. Khare and A. K. Singh, Pseudo-atoms, atoms and a Jordan type decomposition in effect algebras, J. Math. Anal. Appl., 344 (1) (2008), 238–252.
Y. K. Liu and G. Q. Zhang, On the completeness of fuzzy measure space, Fuzzy Sets Syst., 102 (1995), 345–351.
L. Y. Ming and L. M. Kang, Fuzzy Topology, World Scientific Publ. Co., 1997.
E. Pap, Null-additive Set Functions, Kluwer, Dordrecht, Ister Science, Bratislava, 1995.
S. Pulmannov´a, A remark to orthomodular partial algebras, Demonstratio Math., 27 (1994), 687–699.
B. Rieˇcan, The measure extension theorem for subadditive probability measures in orthmodular σ-continuous lattices, Comm. Math. Univ. Carol., 202 (1979), 309–315.
G. T. Ruttimann and J. D. M. Wright, Kalmbach outer measures and valuations, Arch. Math., 64 (6) (1995), 523–529.
P. Srivastava, M. Khare and Y. K. Srivastava, A fuzzy measure algebra as a metric space, Fuzzy Sets Syst., 79 (1996), 395–400.
P. Volauf, Some Problems of the Probability Theory in Ordered Spaces, Ph.D. dissertation, Bratislava, 1977.
Z. Wang, The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl., 99 (1984), 195–218.
Z. Wang and G. J. Klir, Fuzzy Measure Theory, New York, Plenum Press, 1992.