Fractional Calculus Operator and Certain Applications in Geometric Function Theory

Authors

  • Hüseyin Irmak Department of Mathematics, Faculty of Science and Letters, Çankırı Karatekin University, Çankırı, Turkey
  • Nikola Tuneski Faculty of Mechanical Engineering, Skopje, Republic of Macedonia

DOI:

https://doi.org/10.5644/SJM.06.1.04

Keywords:

Open unit disk, analytic, multivalent, starlike, convex, closeto-convex functions, fractional calculus, Jack’s Lemma

Abstract

Using a operator involving fractional calculus introduced by Owa and Srivastava [8], two novel families: $${\mathcal V}_{\delta}^{\alpha, \beta}(\nu;\gamma)\;\; \mbox{and} \;\;{\mathcal W}_{\delta}^{\alpha, \beta}(\mu;\gamma)$$ $$(\delta\neq 0,\; \alpha <1,\;\beta <1,\;\gamma <1,\;\mu\geq 0,\;\nu\in (-1,0)\cup(0,1))$$ of functions $f(z)$ which are analytic and univalent in the open unit disk ${\mathcal U}$ are defined. Moreover some consequences of main results are shown.

 

2000 Mathematics Subject Classification. 30C45, 30A10, 26A33

Downloads

Download data is not yet available.

References

M. P. Chen, H. Irmak and H. M. Srivastava, Some families multivalently analytic functions with negative coefficients, J. Math. Anal. Appl., 214 (1997), 674-690.

J. H. Choi, Y. C. Kim and S. Owa, Fractional calculus operator and its applications in the univalent functions theory, Frac. Calc. Appl. Anal., 4 (3) (2001), 367-378.

P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1983.

A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New Jersey, 1983.

I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469-474.

S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.

S. Owa, On the distortion theorems I, Kyungpook Math. J., 18 (1978), 53-59.

S. Owa, and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39 (1987), 1057-1077.

S. Owa and C. Y. Shen, Generalized classes of starlike and convex functions of order α, Inter. J. Math. Math. Sci., 8 (1985), 455-467.

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon (Switzerland), 1993.

H. M. Srivastava, and S. Owa, (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.

Downloads

Published

11.06.2024

How to Cite

Irmak, H., & Tuneski, N. (2024). Fractional Calculus Operator and Certain Applications in Geometric Function Theory. Sarajevo Journal of Mathematics, 6(1), 51–57. https://doi.org/10.5644/SJM.06.1.04

Issue

Section

Articles