On a Nonlinear Volterra Integral Equation in Two Variables
DOI:
https://doi.org/10.5644/SJM.06.1.05Keywords:
Volterra integral equation, two variables, Banach fixed point theorem, integral inequality, explicit estimate, Bielecki type norm, existence and uniqueness, approximate solution, discrete analoguesAbstract
The aim of this paper is to study the existence, uniqueness and other properties of solutions of a certain nonlinear Volterra integral equation in two variables. The fundamental tools employed in the analysis are based on applications of the Banach fixed point theorem and a certain variant of the integral inequality with explicit estimate on the unknown function.
2000 Mathematics Subject Classification. 34K10, 35R10, 39A10
Downloads
References
A. Bielecki, Une remarque sur la m´ethod de Banach-Cacciopoli-Tikhonov dans la th´eorie des ´equations differentilles ordinaries, Bull. Acad. Polon. Sci., S´er. Sci. Math. Phys. Astr., 4 (1956), 261–264.
H. Brunner and P. J. Vander Houwen, The numerical solution of Volterra equations, CWI Monographs, Vol. 3, North-Holland, Amsterdam, 1986.
H. Brunner, Collection Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, 2004.
C. Corduneanu, Bieleck’s method in the theory of integral equations, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 38 (1984), 23–40.
C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergmon Press, Oxford, 1964.
M. Kwapisz, Bielecki’s method, existence and uniqueness results for Volterra integral
equations in $L^p$ spaces, J. Math. Anal. Appl., 154 (1991), 403–416.
M. Kwapisz, Weighted norms and existence and uniqueness of $L^p$ solutions for integral equations in several variables, J.Differ. Equations, 97 (1992), 246–262.
R. K. Miller, Nonlinear Volterra Integral Equations, W.A. Benjamin, Menlo Park, California, 1971.
B. G. Pachpatte, Inequalities for Differential and Integral Equations, Academic Press, New York, 1998.
B. G. Pachpatte, Inequalities for Finite Difference Equations, Marcel Dekker, Inc., New York, 2002.
B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, NorthHolland Mathematics Studies, Vol. 205, Elsevier Science, B.V., Amsterdam, 2006.
B. G. Pachpatte, On Volterra-Fredholm integral equation in two variables, Demonstr. Math., 40 (2007), 839–852.
W. Walter, Differential and Integral Inequalities, Springer-Verlag, Berlin, New York, 1970.