Two Results on the Commutative Product of Distributions and Functions
DOI:
https://doi.org/10.5644/SJM.06.1.07Keywords:
Distribution, delta-function, product of distributionsAbstract
Let $f$ and $g$ be distributions and let $f_n=(f*\delta_n x)$ and $g_n =(g*\delta _n)(x)$, where $\delta _n(x)$ is a certain sequence converging to the Dirac delta-function. The product $f .g$ of $f$ and $g$ is defined to be the limit of the sequence $\{f_ng_n\}$, provided its limit $h$ exists in the sense that $$\lim _{n \to \infty} \langle f_n (x) g_n (x),\vphi (x) \rangle =\langle h(x), \vphi (x) \rangle $$ for all functions $\vphi$ in ${\mathcal D}.$ It is proved that \begin{align*}(\sgn x|x| ^{-r} \ln ^p |x|). ( |x| ^\mu \ln
^q|x|)
&=\sgn x |x| ^{-r +\mu } \ln ^{p+q}|x| ,\\
(|x| ^{-r} \ln ^p |x|). (\sgn x |x| ^\mu \ln ^q|x| ) &=\sgn x |x| ^{-r +\mu } \ln ^{p+q}|x|
\end{align*}
for $-2<-r+\mu< -1,$ $r=1,2, \ldots$ and $p,q =0,1,2. \ldots .$
2000 Mathematics Subject Classification. 46F10
Downloads
References
B. Fisher, The product of distributions, Quart. J. Math. Oxford (2), 22 (1971), 291–298.
B. Fisher, The product of the distributions $x_+^{-r-{1over 2}}$ and $x_-^{-r-{1over 2}}$}, Proc. Camb. Phil. Soc., 71 (1972), 123–130.
B. Fisher, The product of the distributions $x^{-r}$ and $delta^{(r-1)}(x)$}, Proc. Camb. Phil. Soc., 72 (1972), 201–204.
B. Fisher, Some non-commutative products of distributions, Publ. Math. (Debrecen), 64 (3–4)(2004), 253–259.
B. Fisher, A result on the commutative product of distributions and functions, Internat. J. Funct. Anal. Operator Theory Appl., 1 (1) (2009), 63–60.
I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.