Two Results on the Commutative Product of Distributions and Functions

Authors

  • Brian Fisher Department of Mathematics, University of Leicester, Leicester, England

DOI:

https://doi.org/10.5644/SJM.06.1.07

Keywords:

Distribution, delta-function, product of distributions

Abstract

Let $f$ and $g$ be distributions and let $f_n=(f*\delta_n x)$ and $g_n =(g*\delta _n)(x)$, where $\delta _n(x)$ is a certain sequence converging to the Dirac delta-function. The product $f .g$ of $f$ and $g$ is defined to be the limit of the sequence $\{f_ng_n\}$, provided its limit $h$ exists in the sense that $$\lim _{n \to \infty} \langle f_n (x) g_n (x),\vphi (x) \rangle =\langle h(x), \vphi (x) \rangle $$ for all functions $\vphi$ in ${\mathcal D}.$ It is proved that \begin{align*}(\sgn x|x| ^{-r} \ln ^p |x|). ( |x| ^\mu \ln
^q|x|)
&=\sgn x |x| ^{-r +\mu } \ln ^{p+q}|x| ,\\
(|x| ^{-r} \ln ^p |x|). (\sgn x |x| ^\mu \ln ^q|x| ) &=\sgn x |x| ^{-r +\mu } \ln ^{p+q}|x|
\end{align*}
for $-2<-r+\mu< -1,$ $r=1,2, \ldots$ and $p,q =0,1,2. \ldots .$

 

2000 Mathematics Subject Classification. 46F10

Downloads

Download data is not yet available.

References

B. Fisher, The product of distributions, Quart. J. Math. Oxford (2), 22 (1971), 291–298.

B. Fisher, The product of the distributions $x_+^{-r-{1over 2}}$ and $x_-^{-r-{1over 2}}$}, Proc. Camb. Phil. Soc., 71 (1972), 123–130.

B. Fisher, The product of the distributions $x^{-r}$ and $delta^{(r-1)}(x)$}, Proc. Camb. Phil. Soc., 72 (1972), 201–204.

B. Fisher, Some non-commutative products of distributions, Publ. Math. (Debrecen), 64 (3–4)(2004), 253–259.

B. Fisher, A result on the commutative product of distributions and functions, Internat. J. Funct. Anal. Operator Theory Appl., 1 (1) (2009), 63–60.

I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.

Downloads

Published

11.06.2024

How to Cite

Fisher, B. (2024). Two Results on the Commutative Product of Distributions and Functions. Sarajevo Journal of Mathematics, 6(1), 81–87. https://doi.org/10.5644/SJM.06.1.07

Issue

Section

Articles