Some New Grüss’ Type Inequalities for Functions of Selfadjoint Operators in Hilbert Spaces
DOI:
https://doi.org/10.5644/SJM.06.1.08Keywords:
Selfadjoint operators, Grüss inequality, functions of selfadjoint operatorsAbstract
Some new inequalities of Grüss' type for functions of selfadjoint operators in Hilbert spaces, under suitable assumptions for the involved operators, are given. Several examples for particular functions of interest are provided as well.
2000 Mathematics Subject Classification. 47A63, 47A99
Downloads
References
S. S. Dragomir, A generalisation of Gr¨uss’ inequality in inner product spaces and applications, J. Mathematical Analysis and Applications, 237 (1999), 74–82.
S. S. Dragomir, Some Gr¨uss type inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 4 (2) (2003), Art. 42, (http://jipam.vu.edu.au/article.php?sid=280).
S. S. Dragomir, On Bessel and Gr¨uss inequalities for orthornormal families in inner product spaces, Bull. Austral. Math. Soc., 69 (2) (2004), 327–340.
S. S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure Appl. Math., 5 (3) (2004), Article 76. (Online : http://jipam.vu.edu.au/article.php?sid=432).
S. S. Dragomir, Reverses of the Schwarz inequality in inner product spaces generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc., 73 (1)(2006), 69–78.
S. S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Austral. J. Math. Anal. Appl., 1 (1) (2004), Article 1. (Online: http://ajmaa.org/cgi-bin/paper.pl?string=nrstbiips.tex )
S. S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2006), 255–262.
S. S. Dragomir, Advances in Inequalities of the Schwarz, Gr¨uss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 p.
S. S. Dragomir, Gr¨uss’ type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11 (e) (2008), Art. 11. (ONLINE: http://www.staff.vu.edu.au/RGMIA/v11(E).asp).
S. S. Dragomir, Cebyˇsev’s type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11 (e) (2008), Art. 9. (ONLINE: urlhttp://www.staff.vu.edu.au/RGMIA/v11(E).asp)
A. M. Fink, A treatise on Gr¨uss’ inequality, Analytic and Geometric Inequalities, 93–113, Math. Appl. 478, Kluwer Academic Publ., 1999.
T. Furuta, J. Mi´ci´c Hot, J. Peˇcari´c and Y. Seo, Mond-Peˇcari´c Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
G. Gr¨uss, Uber das Maximum des absoluten Betrages von $frac{1}{b-a}int_{a}^{b}f(x)g(x)dx-frac{1}{left( b-aright)
^{2}} int_{a}^{b}f(x)dxint_{a}^{b}g(x)dx$ , Math. Z., 39 (1935), 215–226.
A. Matkovi´c, J. Peˇcari´c and I. Peri´c, A variant of Jensen’s inequality of Mercer’s type for operators with applications, Linear Algebra Appl., 418 (2) (2006), 551–564.
D. S. Mitrinovi´c, J. E. Peˇcari´c and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
B. Mond and J. Peˇcari´c, On some operator inequalities, Indian J. Math., 35 (1993), 221–232.
B. Mond and J. Peˇcari´c, Classical inequalities for matrix functions, Util. Math., 46 (1994), 155–166.
J. Peˇcari´c, J. Mi´ci´c and Y. Seo, Inequalities between operator means based on the Mond-Peˇcari´c method, Houston J. Math., 30 (1) (2004), 191–207.