On the Completion of Pro-$\mathcal{P}$ Groups
DOI:
https://doi.org/10.5644/SJM.05.2.02Keywords:
Topological group, filter base, inverse limit, profinite group, completion of a group, pro-$\mathcal{P}$ group, paragraded groupAbstract
We examine the class of finite paragraded groups which we will denote by $\mathcal{P}.$ After observing that the class $\mathcal{P}$ is closed with respect to subgroups and direct products (\cite{7}), we define the notion of a pro-$\mathcal{P}$ group and consider the completion of such a group.
2000 Mathematics Subject Classification. 08A05, 16W50, 20L05, 20E18, 20-99
Downloads
References
N. Bourbaki, Alge`bre, Chap. II, 3e ´edit. Paris, Hermann, 1962.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules) I, Proc. Japan Acad. Ser. A, 62 (9) (1986), 350–352.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules) II, Proc. Japan Acad. Ser. A, 62 (10) (1986), 389–391.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules) III, Proc. Japan Acad. Ser. A, 63 (1) (1987), 10–12.
M. Krasner and M. Vukovi´c, Structures paragradu´ees (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, No. 77, Queen’s University, Kingston, Ontario, Canada 1987.
M. Vukovi´c, Structures gradu´ees et paragradu´ees, Prepublication de l’Institut Fourier, Universit´e de Grenoble I, No. 536 (2001), pp. 1-40. Online(http://www-fourier.ujf-grenoble.fr/prepublications.html)
V. Peri´c, Algebra I, IP Svjetlost, Sarajevo, 1991.
J. S. Wilson, Profinite Groups, Oxford University Press, Oxford 1998.
E. Ili´c-Georgijevi´c, Paragraduirane strukture (grupe, prsteni i moduli), Masters Thesis, University of East Sarajevo, 2009.