Multivariate fractional Taylor's formula revisited

Authors

  • George A. Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN, U.S.A.

DOI:

https://doi.org/10.5644/SJM.05.2.03

Keywords:

Multivariate fractional Taylor formula, fractional derivative, Riemann-Liouville fractional integral

Abstract

This is a continuation of [2]. Here is established a multivariate fractional Taylor's formula via the Caputo fractional derivative. The fractional remainder is expressed as a composition of two Riemann-Liouville fractional integrals.

 

2000 Mathematics Subject Classification. 26A33

Downloads

Download data is not yet available.

References

G. Anastassiou, Riemann-Liouville fractional multivariate Opial type inequalities on spherical shells, accepted for publication, Bull. Allahabad Math. Soc., India, 2007.

G. Anastassiou, Multivariate fractional Taylor’s formula, Commun. Appl. Anal., 11 (2) (2007), 189–199.

G. Anastassiou, Caputo fractional multivariate Opial type inequalities on spherical shells, submitted, 2007.

Kai Diethelm, Fractional differential equations, on line: http://www.tu-bs.de/diethelm/lehre/f-dgl02/fde-skript.ps.gz, 2003.

Downloads

Published

11.06.2024

How to Cite

Anastassiou, G. A. (2024). Multivariate fractional Taylor’s formula revisited. Sarajevo Journal of Mathematics, 5(2), 159–167. https://doi.org/10.5644/SJM.05.2.03

Issue

Section

Articles