Basins of Attraction of Equilibrium Points of Monotone Difference Equations
DOI:
https://doi.org/10.5644/SJM.05.2.06Keywords:
Basin, difference equation, attractivity, invariant manifolds, periodic solutionsAbstract
We investigate the global character of the difference equation of the form $$ x_{n+1} = f(x_n, x_{n-1},\ldots, x_{n-k+1}), \quad
n=0,1, \ldots $$ with several equilibrium points, where $f$ is increasing in all its variables. We show that a considerable number of well known difference equations can be embeded into this equation through the iteration process. We also show that a negative feedback condition can be used to determine a part of the basin of attraction of different equilibrium points, and that the boundaries of the basins of attractions of different locally asymptotically stable equilibrium points are in fact the global stable manifolds of neighboring saddle or non-hyperbolic equilibrium points.
2000 Mathematics Subject Classification. 39A10, 39A11
Downloads
References
A. M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part I, Int. J. Difference Equ., 3 (2008), 1–35.
A. Brett and M. R. S. Kulenovi´c, Global dynamics behavior of $y_{n+1}=frac{p y_n + y_{n-1}}{r + q y_{n} + y_{n-1}}$, Adv. Difference Equ., Article ID 41541 pp. 22. (2007).
E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman & Hall/CRC Press, November 2007.
E. Camouzis, M. R. S. Kulenovi´c, O. Merino, and G. Ladas, Rational systems in the plane, J. Difference Equ. Appl., 15 (2009), 303–323.
E. Dancer and P. Hess, Stability of fixed points for order preserving discrete-time dynamical systems, J. Reine Angew Math., 419 (1991), 125–139.
P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric approach, J. Math. Biol., 11 (1981), 319–335.
E. G. Enciso and E. D. Sontag, Global attractivity, I/O monotone small-gain theorems and biological delay systems, Discrete Contin. Dyn. Syst., 14 (2006), 549–578.
E. A. Grove, C. M. Kent, R. Levins, G. Ladas and S. Valicenti, Global stability in some population models, Proceedings of the Fourth International Conference on Difference Equations and Applications, August 27-31, 1998, Poznan, Poland, Gordon and Breach Science Publishers, 2000, 149–176.
M. L. J. Hautus and T. S. Bolis, Solution to Problem E2721, Amer. Math. Monthly, 86 (1979), 865-866.
M. Hirsch and H. Smith, Monotone Dynamical Systems, Handbook of Differential Equations, Ordinary Differential Equations Vol. II, 239–357, Elsevier B. V., Amsterdam, 2005.
M. Hirsch and H. L. Smith, Monotone maps: A Review, J. Difference Equ. Appl., 11 (2005), 379–398.
E. A Janowski and M. R. S. Kulenovi´c, Attractivity and global stability for linearizable difference equations, Comput. Math. Appl., 57 (2009), 1592–1607.
Y. K. Kuang and J. M. Cushing, Global stability in a nonlinear difference-delay equation model of flour beetle population growth, J. Difference Equ. Appl., 2 (1) (1996), 31–37.
V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, Holland, 1993.
M. R. S. Kulenovi´c and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, Boca Raton, London, 2001.
M. R. S. Kulenovi´c, G. Ladas and W. S. Sizer, On the recursive sequence $x_{n+1}=frac{alpha x_n+beta x_{n-1}}{gamma x_n+C x_{n-1}}$, Math. Sci. Res. Hot-Line, 2 (1998), 1–16.
M. R. S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman and Hall/CRC, Boca Raton, London, 2002.
M. R. S. Kulenovi´c and O. Merino, Global attractivity of the equilibrium of $x_{n+1} = (p x_n + x_{n-1})
/ (q x_n + x_{n-1} )$ for $q
M. R. S. Kulenovi´c and O. Merino, A global attractivity result for maps with invariant boxes, Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 97–110.
M. R. S. Kulenovi´c and O. Merino, Competitive-exclusion versus competitivecoexistence for systems in the plane, Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 1141–1156.
M. R. S. Kulenovi´c and O. Merino, Global bifurcations for competitive systems in the plane, Discrete Contin. Dyn. Syst., Ser. B, 12 (2009), 133–149.
M. R. S. Kulenovi´c and O. Merino, Invariant manifolds for competitive discrete systems in the plane, arXiv:0905.1772v1 [math.DS] (to appear).
M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of a linear fractional system of difference equations, J. Inequal. Appl., 2 (2005), 127–144.
M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ., 2006, Art. ID 19756, 13 pp.
M. R. S. Kulenovi´c and A.-A. Yakubu, Compensatory versus overcompensatory dynamics in density-dependent Leslie models, J. Difference Equ. Appl., 10 (2004), 1251–1265.
R. L. Nussbaum, Global stability, two conjectures and maple, Nonlinear Anal. TMA, 66 (2007), 1064–1090.
C. Robinson, Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995.
H. L. Smith, Invariant curves for mappings, SIAM J. Math. Anal., 17 (1986), 1053–1067.
H. L. Smith, Periodic competitive differential equations and the discrete dynamics of competitive maps, J. Differ. Equations, 64 (1986), 165–194.
H. L. Smith, Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal., 17 (1986), 1289–1318.
H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335–357.
H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biol., 53 (2006), 747–758.
P. Tak´aˇc, Asymptotic behavior of strongly monotone time-periodic dynamical processes with symmetry, J. Differ. Equations, 100 (2) (1992), 355–378.
P. Tak´aˇc, Domains of attraction of generic ω-limit sets for strongly monotone discretetime semigroups, J. Reine Angew. Math., 423 (1992), 101–173.