An Example of a Globally Asymptotically Stable Anti-monotonic System of Rational Difference Equations in the Plane
DOI:
https://doi.org/10.5644/SJM.05.2.07Keywords:
Anti-monotone, global asymptotic stability, difference equations, rate of convergenceAbstract
We consider the following system of rational difference equations in the plane: $$
\left\{
\begin{aligned}%{rcl}
x_{n+1} &= \frac{\alpha_1}{A_1+B_1 x_n+ C_1y_n} \\[0.2cm]
y_{n+1} &= \frac{\alpha_2}{A_2+B_2 x_n+ C_2y_n}
\end{aligned}
\right. \, , \quad n=0,1,2,\ldots $$ where the parameters $\alpha_1, \alpha_2, A_1, A_2, B_1, B_2, C_1, C_2$ are positive numbers and initial conditions $x_0$ and $y_0$ are nonnegative numbers. We prove that the unique positive equilibrium of this system is globally asymptotically stable. Also, we determine the rate of convergence of a solution that converges to the equilibrium $E=(\bar{x},\bar{y})$ of this systems.
2000 Mathematics Subject Classification. 39A10, 39A11, 39A20
Downloads
References
E. Camouzis, M. R. S. Kulenovi´c, G. Ladas and O. Merino, Rational systems in the plane - open problems and conjectures, J. Difference Equ. Appl., 15( 2009), 303–323.
D. Clark, M. R. S. Kulenovi´c, and J.F. Selgrade, Global asymptotic behavior of a two dimensional difference equation modelling competition, Nonlinear Anal., Thery Methods Appl, 52 (2003), 1765–1776.
J. M. Cushing, S. Levarge, N. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, J. Difference Equ. Appl., 10 (2004), 1139–1152.
M. Hirsch and H. Smith, Monotone Dynamical Systems. Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, 239-357, Elsevier B. V., Amsterdam, 2005.
S. Kalabuˇsi´c and M. R. S. Kulenovi´c, Dynamics od certain anti-competitive systems of rational difference equations in the plane, 2009. (to appear)
M. R. S. Kulenovi´c and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, Boca Raton, London, 2001.
M. R. S. Kulenovi´c and O. Merino, Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman& Hall/CRC Press, Boca Raton, 2002.
M. R. S. Kulenovi´c and O. Merino, A global attractivity result for maps with invariant boxes, Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 97–110.
M. R. S. Kulenovi´c and O. Merino, Competitive-exclusion versus competitivecoexistence for systems in the plane, Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 1141–1156.
M. R. S. Kulenovi´c and O. Merino, Global bifurcation for competitive systems in the plane, Discrete Contin. Dyn. Syst., Ser. B, 12 (2009), 133–149.
M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of two dimensional linear fractional system of difference equations, Rad. Mat., 11 (2002), 59–78.
M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of a linear fractional system of difference equations, J. Inequal. Appl., (2005), 127-143.
M. R. S. Kulenovi´c and M. Nurkanovi´c, Asymptotic behavior of a competitive system of linear fractional difference equations, Adv. Difference Equ., 2006, Art. ID 19756, 13pp.
M. R. S. Kulenovi´c and Z. Nurkanovi´c, The rate of convergence of solution of a threedimmensional linear fractional system of difference equations, Zbornik radova PMF Tuzla - Svezak Matematika, 2 (2005), 1-6.
M. Pituk, More on Poincare’s and Peron’s theorems for diffrence equations, J. Difference Equ. Appl., 8 (2002), 201-216.
C. Robinson, Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, 1995.
H. L. Smith, Planar competitive and cooperative difference equations, J. Difference Equ. Appl., 3 (1998), 335–357.