The Value of Certain Combinatorics Sum

Authors

  • Ramiz Vugdalić Department of Mathematics, Faculty of Science, University of Tuzla, Tuzla, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.05.2.08

Keywords:

Sum, function of two nonnegative integers, recurrence relations, representations formulas, Stirling's numbers of the second kind, number of all possible permutations with repetitions

Abstract

In this paper we analyze the values and the properties of the function $S(n,l):=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{l}\ \
(n,l\in \mathbb{N\cup }\left\{ 0\right\} ),$ for $n<l.$ At first, we obtain two recurrence relations. Namely, we prove that for
every $n\in \mathbb{N\cup } \left\{ 0\right\} $ and every $l\in \mathbb{N}$ such that $l>n,$ we have
\begin{equation*}
S(n+1,l)=\sum_{k=1}^{l-n}\binom{l}{k}S(n,l-k),
\end{equation*}
and also, for every $n\in \mathbb{N\cup }\left\{ 0\right\} $and every $l\in \mathbb{N}$, we have
\begin{equation*}
S(n+1,l)=(n+1)S(n,l-1)+(n+1)S(n+1,l-1).
\end{equation*}
Further, we conclude that for every $n\geq 2$ and every $l\geq n$ the following representation formula holds
\begin{multline*}
S(n,l) =\sum\limits_{k_{1}=1}^{l-(n-1)}\binom{l}{k_{1}}\sum
\limits_{k_{2}=1}^{l-k_{1}-(n-2)}\binom{l-k_{1}}{k_{2}}\\
\cdot\sum\limits_{k_{3}=1}^{l-k_{1}-k_{2}-(n-3)}\binom{l-k_{1}-k_{2}}{k_{3}}\dots
\sum\limits_{k_{n-1}=1}^{l-\sum\limits_{i=1}^{n-2}k_{i}-1}\binom{
l-\sum\limits_{i=1}^{n-2}k_{i}}{k_{n-1}}.
\end{multline*}
We obtain an explicit formula for the calculation $S(n,l),$ especially for $ l=n+1,\dots,n+5,$ and later we give a general result.

 

2000 Mathematics Subject Classification. 40B05, 11Y55, 05A10

Downloads

Download data is not yet available.

References

Herbert John Ryser, Combinatorial Mathematics, The Mathematical Association of America, 1963.

Darko Veljan, Kombinatorna i diskretna matematika, Zagreb, Algoritam, 2001.

Downloads

Published

11.06.2024

How to Cite

Vugdalić, R. (2024). The Value of Certain Combinatorics Sum. Sarajevo Journal of Mathematics, 5(2), 247–255. https://doi.org/10.5644/SJM.05.2.08

Issue

Section

Articles