The Value of Certain Combinatorics Sum
DOI:
https://doi.org/10.5644/SJM.05.2.08Keywords:
Sum, function of two nonnegative integers, recurrence relations, representations formulas, Stirling's numbers of the second kind, number of all possible permutations with repetitionsAbstract
In this paper we analyze the values and the properties of the function $S(n,l):=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{l}\ \
(n,l\in \mathbb{N\cup }\left\{ 0\right\} ),$ for $n<l.$ At first, we obtain two recurrence relations. Namely, we prove that for
every $n\in \mathbb{N\cup } \left\{ 0\right\} $ and every $l\in \mathbb{N}$ such that $l>n,$ we have
\begin{equation*}
S(n+1,l)=\sum_{k=1}^{l-n}\binom{l}{k}S(n,l-k),
\end{equation*}
and also, for every $n\in \mathbb{N\cup }\left\{ 0\right\} $and every $l\in \mathbb{N}$, we have
\begin{equation*}
S(n+1,l)=(n+1)S(n,l-1)+(n+1)S(n+1,l-1).
\end{equation*}
Further, we conclude that for every $n\geq 2$ and every $l\geq n$ the following representation formula holds
\begin{multline*}
S(n,l) =\sum\limits_{k_{1}=1}^{l-(n-1)}\binom{l}{k_{1}}\sum
\limits_{k_{2}=1}^{l-k_{1}-(n-2)}\binom{l-k_{1}}{k_{2}}\\
\cdot\sum\limits_{k_{3}=1}^{l-k_{1}-k_{2}-(n-3)}\binom{l-k_{1}-k_{2}}{k_{3}}\dots
\sum\limits_{k_{n-1}=1}^{l-\sum\limits_{i=1}^{n-2}k_{i}-1}\binom{
l-\sum\limits_{i=1}^{n-2}k_{i}}{k_{n-1}}.
\end{multline*}
We obtain an explicit formula for the calculation $S(n,l),$ especially for $ l=n+1,\dots,n+5,$ and later we give a general result.
2000 Mathematics Subject Classification. 40B05, 11Y55, 05A10
Downloads
References
Herbert John Ryser, Combinatorial Mathematics, The Mathematical Association of America, 1963.
Darko Veljan, Kombinatorna i diskretna matematika, Zagreb, Algoritam, 2001.