Power Inequalities for the Numerical Radius of a Product of Two Operators in Hilbert Spaces

Authors

  • S. S. Dragomir Research Group in Mathematical, Inequalities & Applications, School of Engineering & Science,  Victoria University, Melbourne City, VIC, Australia

DOI:

https://doi.org/10.5644/SJM.05.2.10

Abstract

Some power inequalities for the numerical radius of a product of two operators in Hilbert spaces with applications for commutators and self-commutators are given.

 

2000 Mathematics Subject Classification. 47A12, 47A30, 47A63, 47B15

Downloads

Download data is not yet available.

References

S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl., 419 (1) (2006), 256–264.

S.S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert spaces, Bull. Austral. Math. Soc., 73 (2) (2006), 255–262.

S.S. Dragomir, A survey of some recent inequalities for the norm and numerical radius of operators in Hilbert spaces, Banach J. Math. Anal., 1 (2) (2007), 154–175.

S.S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Demonstratio Math., 40 (2) (2007), 411–417.

S.S. Dragomir, Norm and numerical radius inequalities for sums of bounded linear operators in Hilbert spaces, Facta Univ. Ser. Math. Inform., 22 (1) (2007), 61–75.

S.S. Dragomir, Inequalities for some functionals associated with bounded linear operators in Hilbert spaces, Publ. Res. Inst. Math. Sci., 43 (4) (2007), 1095–1110.

S. S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math., 8 (2) (2007), Article 52, 22 pp.

S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces, Linear Algebra Appl., 428 (11-12) (2008), 2750–2760.

S.S. Dragomir, Inequalities for the numerical radius, the norm and the maximum of the real part of bounded linear operators in Hilbert spaces, Linear Algebra Appl., 428 (11-12) (2008), 2980–2994.

S.S. Dragomir, Some inequalities for commutators of bounded linear operators in Hilbert spaces, Preprint,RGMIA Res. Rep. Coll., 11 (1) (2008), Article 7, Online http://www.staff.vu.edu.au/rgmia/v11n1.asp.

K.E. Gustafson and D.K.M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.

P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, Heidelberg, Berlin, Second edition, 1982.

M. El-Haddad, and F. Kittaneh, Numerical radius inequalities for Hilbert space operators, II.Studia Math., 182 (2) (2007), 133–140.

F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci., 24 (1988), 283–293.

F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (1) (2003), 11-17.

F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (1) (2005), 73-80.

T. Yamazaki, On upper and lower bounds for the numerical radius and an equality condition, Studia Math., 178 (1) (2007), 83–89.

Downloads

Published

11.06.2024

How to Cite

Dragomir, S. S. (2024). Power Inequalities for the Numerical Radius of a Product of Two Operators in Hilbert Spaces. Sarajevo Journal of Mathematics, 5(2), 269–278. https://doi.org/10.5644/SJM.05.2.10

Issue

Section

Articles