On the Discrete Nonlinear Hammerstein Systems With Non-symmetric Kernels
DOI:
https://doi.org/10.5644/SJM.05.2.11Keywords:
Hammerstein discrete equation, infinite nonlinear systems, non-symmetric kernel, superposition operator, space of sequencesAbstract
We study the nonlinear Hammerstein system
$x(t)=\sum\limits_{s=1}^\infty {k(s,t)} f(s,x(s))+g(t)\quad (t\in\mathbb{N})$
with non-symmetric kernel $k(s,t)$.
2000 Mathematics Subject Classification. 47H30, 47H17
Downloads
References
N. I. Ahiezer ans I. M. Glazman, Linear Operator Theory in Hilbert Spaces, Engl.transl. Pitman, Boston, 1981.
J. Appell and P. P. Zabreiko, Nonlinear superposition operators, Cambridge University Press, Cambridge 1990.
J. Appell, E. De Pascal and P.P. Zabreiko, On the Unique Solvability of Hammerstein Integral Equations with Non-Symmetric Kernels, Progress in Nonlinear Differential Equations and Their Applications, Vol. 40, 27-34, Birkhauser, Basel-Boston- Berlin, 2000.
S.N. Ashabov, Investigation of nonlinear singular integral equations by the method of monotone operators,(in Russian), Izv.Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly ser. Estestv. Nauk., no. 2,3,. . . 5,108, 1980.
F. Dedagich and P. P. Zabreiko, On the superposition operators in lp spaces. Sib. Mat. Zh., XXVIII, No 1. Engl.transl., Plenum Publishing Corporation, 1987.
M. Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungsysteme und Functionalgleichungen, Math. Z., 39 (1934), 45–75.
O. Hadzich, Introduction in the fixpoint theory , Institut for mathematics Novi Sad, 1978.
A. Hammerstein, Nichtlinear Integralgleichungen nebst Anwendungen, Acta Math., 54 (1930),117–176.
G. H. Hardy, J. E. Littlewood and G. Polija, Inequalities, At the University Press – Cambridge, 1934.
L. V. Kantorovich and G. P. Akilov, Functional Analysis, Engl.transl., Pergamon Press, Oxford, 1982.
M. A. Krasnosel’skij, Topological Methods in the Theory of Nonlinear Integral Equations, Engl.tansl., Macmillan, New York, 1964.
M. A. Krasnosel’skij and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Engl. transl.: Springer, Berlin, 1984.
G. Minty, Monotone nonlinear operators in Hilbert spaces, Duke Math. J., 29 (1962), 311–316.