On the Discrete Nonlinear Hammerstein Systems With Non-symmetric Kernels

Authors

  • Fehim Dedagić Department of Mathematics, Faculty of Science and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.05.2.11

Keywords:

Hammerstein discrete equation, infinite nonlinear systems, non-symmetric kernel, superposition operator, space of sequences

Abstract

We study the nonlinear Hammerstein system

$x(t)=\sum\limits_{s=1}^\infty {k(s,t)} f(s,x(s))+g(t)\quad (t\in\mathbb{N})$

with non-symmetric kernel $k(s,t)$.

 

2000 Mathematics Subject Classification. 47H30, 47H17

Downloads

Download data is not yet available.

References

N. I. Ahiezer ans I. M. Glazman, Linear Operator Theory in Hilbert Spaces, Engl.transl. Pitman, Boston, 1981.

J. Appell and P. P. Zabreiko, Nonlinear superposition operators, Cambridge University Press, Cambridge 1990.

J. Appell, E. De Pascal and P.P. Zabreiko, On the Unique Solvability of Hammerstein Integral Equations with Non-Symmetric Kernels, Progress in Nonlinear Differential Equations and Their Applications, Vol. 40, 27-34, Birkhauser, Basel-Boston- Berlin, 2000.

S.N. Ashabov, Investigation of nonlinear singular integral equations by the method of monotone operators,(in Russian), Izv.Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly ser. Estestv. Nauk., no. 2,3,. . . 5,108, 1980.

F. Dedagich and P. P. Zabreiko, On the superposition operators in lp spaces. Sib. Mat. Zh., XXVIII, No 1. Engl.transl., Plenum Publishing Corporation, 1987.

M. Golomb, Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungsysteme und Functionalgleichungen, Math. Z., 39 (1934), 45–75.

O. Hadzich, Introduction in the fixpoint theory , Institut for mathematics Novi Sad, 1978.

A. Hammerstein, Nichtlinear Integralgleichungen nebst Anwendungen, Acta Math., 54 (1930),117–176.

G. H. Hardy, J. E. Littlewood and G. Polija, Inequalities, At the University Press – Cambridge, 1934.

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Engl.transl., Pergamon Press, Oxford, 1982.

M. A. Krasnosel’skij, Topological Methods in the Theory of Nonlinear Integral Equations, Engl.tansl., Macmillan, New York, 1964.

M. A. Krasnosel’skij and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Engl. transl.: Springer, Berlin, 1984.

G. Minty, Monotone nonlinear operators in Hilbert spaces, Duke Math. J., 29 (1962), 311–316.

Downloads

Published

11.06.2024

How to Cite

Dedagić, F. (2024). On the Discrete Nonlinear Hammerstein Systems With Non-symmetric Kernels. Sarajevo Journal of Mathematics, 5(2), 279–289. https://doi.org/10.5644/SJM.05.2.11

Issue

Section

Articles