Riemann-Liouville and Caputo Fractional Approximation of Csiszar’s $f$-Divergence
DOI:
https://doi.org/10.5644/SJM.05.1.01Keywords:
Csiszar's discrimination, Csiszar's distance, fractional calculus, Riemann-Liouville and Caputo fractional derivativesAbstract
Here are established various tight probabilistic inequalities that give nearly best estimates for the Csiszar's $f$-divergence. These involve Riemann-Liouville and Caputo fractional derivatives of the directing function $f.$ Also a lower bound is given for the Csiszar's distance. The Csiszar's discrimination is the most essential and general measure for the comparison between two probability measures. This is continuation of [4].
2000 Mathematics Subject Classification. 26A33, 26D15, 28A25, 60E15
Downloads
References
G. Anastassiou, Fractional Poincar´e type inequalities, submitted, 2007.
G. Anastassiou, Caputo fractional multivariate Opial type inequalities on spherical shells, submitted, 2007.
G. Anastassiou, Riemann-Liouville fractional multivariate Opial type inequalities on spherical shells, Bull. Allahabad Math. Soc., 23 (2008), 65–140.
G. Anastassiou, Fractional and other approximation of Csiszar’s f-divergence, Rend. Circ. Mat. Palermo, Serie II, Suppl. 99 (2005), 5–20.
N. S. Barnett, P. Cerone, S. S. Dragomir, and A. Sofo, Approximating Csiszar’s fdivergence by the use of Taylor’s formula with integral remainder, (paper #10, pp. 16),
in Inequalities for Csiszar f-Divergence in Information Theory, S. S. Dragomir (ed.), Victoria University, Melbourne, Australia, 2000. On line: http://rgmia.vu.edu.au
I. Csiszar, Eine Informationstheoretische Ungleichung und ihre Anwendung auf den
Beweis der Ergodizit¨at von Markoffschen Ketten, Magyar Trud. Akad. Mat. Kutato
Int. K¨ozl. 8 (1963), 85–108.
I. Csiszar, Information-type measures of difference of probability distributions and
indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299–318.
Kai Diethelm, Fractional Differential Equations, on line: http://www.tu-bs.de/diethelm/lehre/f-dgl02/fde-skript.ps.gz
S. S. Dragomir (Ed.), Inequalities for Csiszar f-Divergence in Information Theory, Victoria University, Melbourne, Australia, 2000. On line: http://rgmia.vu.edu.au
S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University, Melbourne, Adelaide, Australia, on line:http://rgmia.vu.edu.au
S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86.
S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.
A. R´enyi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, I, Berkeley, CA, 1960, 547–561.