Riemann-Liouville and Caputo Fractional Approximation of Csiszar’s $f$-Divergence

Authors

  • George A. Anastassiou Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA

DOI:

https://doi.org/10.5644/SJM.05.1.01

Keywords:

Csiszar's discrimination, Csiszar's distance, fractional calculus, Riemann-Liouville and Caputo fractional derivatives

Abstract

Here are established various tight probabilistic inequalities that give nearly best estimates for the Csiszar's $f$-divergence. These involve Riemann-Liouville and Caputo fractional derivatives of the directing function $f.$ Also a lower bound is given for the Csiszar's distance. The Csiszar's discrimination is the most essential and general measure for the comparison between two probability measures. This is continuation of [4].

 

2000 Mathematics Subject Classification. 26A33, 26D15, 28A25, 60E15

Downloads

Download data is not yet available.

References

G. Anastassiou, Fractional Poincar´e type inequalities, submitted, 2007.

G. Anastassiou, Caputo fractional multivariate Opial type inequalities on spherical shells, submitted, 2007.

G. Anastassiou, Riemann-Liouville fractional multivariate Opial type inequalities on spherical shells, Bull. Allahabad Math. Soc., 23 (2008), 65–140.

G. Anastassiou, Fractional and other approximation of Csiszar’s f-divergence, Rend. Circ. Mat. Palermo, Serie II, Suppl. 99 (2005), 5–20.

N. S. Barnett, P. Cerone, S. S. Dragomir, and A. Sofo, Approximating Csiszar’s fdivergence by the use of Taylor’s formula with integral remainder, (paper #10, pp. 16),

in Inequalities for Csiszar f-Divergence in Information Theory, S. S. Dragomir (ed.), Victoria University, Melbourne, Australia, 2000. On line: http://rgmia.vu.edu.au

I. Csiszar, Eine Informationstheoretische Ungleichung und ihre Anwendung auf den

Beweis der Ergodizit¨at von Markoffschen Ketten, Magyar Trud. Akad. Mat. Kutato

Int. K¨ozl. 8 (1963), 85–108.

I. Csiszar, Information-type measures of difference of probability distributions and

indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299–318.

Kai Diethelm, Fractional Differential Equations, on line: http://www.tu-bs.de/diethelm/lehre/f-dgl02/fde-skript.ps.gz

S. S. Dragomir (Ed.), Inequalities for Csiszar f-Divergence in Information Theory, Victoria University, Melbourne, Australia, 2000. On line: http://rgmia.vu.edu.au

S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria University, Melbourne, Adelaide, Australia, on line:http://rgmia.vu.edu.au

S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86.

S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.

A. R´enyi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, I, Berkeley, CA, 1960, 547–561.

Downloads

Published

11.06.2024

How to Cite

Anastassiou, G. A. (2024). Riemann-Liouville and Caputo Fractional Approximation of Csiszar’s $f$-Divergence. Sarajevo Journal of Mathematics, 5(1), 3–12. https://doi.org/10.5644/SJM.05.1.01

Issue

Section

Articles