On the Cauchy Problem for the Fokker-Planck-Boltzmann Equation With Infinite Initial Energy
DOI:
https://doi.org/10.5644/SJM.05.1.06Keywords:
Fokker-Planck-Boltzmann equation, renormalized solution, dispersive effectsAbstract
We prove a new existence result for the Fokker-Planck-Boltzmann
equation with an initial data with infinite energy in the framework of renormalization. We extend the result of DiPerna-Lions by assuming $f_0(|x|^\alpha+|x-v|^2)\in L^1$ instead of $f_0(|x|^2+|v|^2)\in L^1$.
2000 Mathematics Subject Classification. 35Q35, 76P05, 82C40
Downloads
References
R. J. DiPerna and P.-L. Lions, On the Fokker-Planck-Boltzmann equation, Comm. Math. Phys., 120 (1988), 1–23
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theorey of Dilute Gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994.
R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equation: Global existence and weak stability, Ann. Math., 130 (1989),321–366
C. Bardos, F. Golse and C. D. Levermore, The acoustic limit for the Boltzmann equation, Arch. Rat. Mech. Anal., 153 (2000),177–204.
P.-L. Lions and N. Masmoudi, From the Boltzmann equations to the equations of imcompressible fluid mechanics, I, II, Arch. Rat. Mech. Anal., 158 (2001),173–211
R. Alexandre and C. Villani, On the Boltzmann equation for long-range interactions, Comm. Pure Appl. Math., 55 (2002), 30–70.
L. Boccardo, D. Giachetti, J.-I. Diaz and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Diff. Eq., 106 (1993), 215–237.
D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear evolution problems, J. Math. Pures Appl., 77 (1998), 117–151.
D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Diff. Eq., 177 (2001), 331–374.
M.-L. Zheng and X.-P. Yang, On the Fokker-Planck-Boltzmann equation without cutoff, Chinese Ann. Math. (Series A), 29 (2008), 573–582.
M.-L. Zheng and X.-P. Yang, Viscosity analysis on the spatially homogeneous Boltzmann equation, Asymptotic Anal., 53 (2007), 13–28.
B. Perthame, Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Diff. Eq., 21 (1996), 659–686.
S. Mischler and B. Perthame, Boltzmann equation with infinite energy: Renormalized solutions and distributional solutions for small initial data and initial data close to a Maxwellian, SIAM J. Math. Anal., 28 (1997), 1015–1027.
L. H¨ormander, The Analysis of Linear Partial Differential Operators, I, SpringerVerlag, Berlin 1983.