The $G$-translativity of Abel-type Transformations
DOI:
https://doi.org/10.5644/SJM.05.1.08Keywords:
$G-G$ method, $G$-translative, Abel-type transformationsAbstract
Suppose $0<t_{n}<1$ and $\lim_{n\rightarrow\infty}$ $t_{n}=1$, then the Abel-type matrix, denoted by $A_{\alpha,t}$, is the matrix defined by
\[
a_{nk}=\left(\stackrel{k+\alpha}{k}\right)t^{k}_{n}\left(1-t_{n}\right)^{\alpha+1},\quad\alpha>-1.
\]
Recently the author proved that the Abel-type matrix $A_{\alpha,t}$ is $\ell$-transla\-ti\-ve [2]. In this paper, we investigate the $G$-translativity of these transformations.
2000 Mathematics Subject Classification. 40A05, 40D99, 40C05
Downloads
References
D. Borwin, On a scale of Abel-type of summability methods, Proc. Cambridge Math. Soc., 53 (1957), 318–322.
M. Lemma, The $ell-ell$ translativity of Abel-type matrix, Int. J. Math. Math. Sci., 23 (3) (2000), 189–195.