On the Theory of Convolution Integral Equations Related to Lebedev’s Type Operators
DOI:
https://doi.org/10.5644/SJM.05.1.11Keywords:
Convolution integral equations, singular equations, Kontorovich-Lebedev transform, modified Bessel function, Fourier transform, Riemann boundary value problem, Cauchy's kernel, Banach ringAbstract
We draw a parallel with the Gakhov-Cherskii method to investigate a class of convolution integral equations related to the Kontorovich-Lebedev and Lebedev's type transformations. A relationship with the Cauchy type integral is obtained. The general convolution equation is solved being reduced to the Riemann boundary value problem by means of the Kontorovich-Lebedev transform.
2000 Mathematics Subject Classification. 45A05, 45E05, 44A15, 33C10, 30E20, 30E25
Downloads
References
M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
N. I. Akhiezer, Lectures on Integral Transforms, Translations of Mathematical Monographs, Vol. 70, AMS, Providence, 1988.
F. D. Gakhov, Boundary Value Problems, Dover Publ., New York, 1990.
F. D. Gakhov and Yu. I. Cherskii, Equations of Convolution Type, Nauka, Moscow, 1978 (in Russian).
L. D. Gusarevich, On an integral equation with two kernels solvable by the Kontorovich-Lebedev transformation, Izv. NAN Belarusi, 1 (1999), 37- 44 (in Russian).
M. Krakowski, On certain functions connected with the Bessel functions, Zastos. Mat., 4 (1958), 130-141 (in Polish).
A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series, Vol. I; Elementary Functions, Vol. II; Special Functions, Gordon and Breach, New York and London, 1986.
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937.
S. B. Yakubovich and L. D. Gusarevich, On the non-convolution transformation with Macdonald type kernel function, Fract. Calc. Appl. Anal., 1 (3) (1998), 297- 309.
S. B. Yakubovich and Yu. F. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions, Kluwers Ser. Math. Appl., Vol. 287, Dordrecht, Boston, London, 1994.
S. B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.
S. B. Yakubovich, On the convolution for the Kontorovich-Lebedev transform and its applications to integral equations, Dokl. Acad. Nauk BSSR, 31 (2) (1987), 101–103 (in Russian).
S. B. Yakubovich, Boundedness and inversion properties of certain convolution transforms, J. Korean Math. Soc., 40 (6) (2003), 999–1014.
S. B. Yakubovich, Convolution Hilbert spaces associated with the Kontorovich-Lebedev transformation, Thai J. Math., 1 (2) (2003), 9–16.
S. B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math., 54 (2) (2003), 99–110.
S. B. Yakubovich, A class of integral equations and index transformations related to the modified and incomplete Bessel functions, J. Integral Equations Appl., (to appear).
S. B. Yakubovich, L2-interpretation of the Kontorovich-Lebedev integrals, Int. J. Pure Appl. Math., 42 (1) ( 2008), 99– 110.