On a Result of Hardy and Ramanujan
DOI:
https://doi.org/10.5644/SJM.04.2.01Keywords:
Factorial function, prime number, inequalityAbstract
In this paper, we introduce some explicit approximations for the summation $\sum_{k\leq n}\Omega(k)$, where $\Omega(k)$ is the total number of prime factors of $k$.
2000 Mathematics Subject Classification. 05A10, 11A41, 26D15, 26D20
Downloads
References
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972.
Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, Inc., 1957.
P. Dusart, In´egalit´es explicites pour $psi(X)$, $theta(X)$, $pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can., 21 (2) (1999), 53–59.
G. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math., 48 (1917), 76–92.
M. Hassani, Equations and inequalities involving vp(n!), J. Inequal. Pure Appl. Math. (JIPAM), 6 (2) (2005), Article 29.
M. Hassani, On the decomposition of n! into primes, arXiv:math/0606316v6 [math.-NT].
Melvyn B. Nathanson, Elementary Methods in Number Theory, Springer, 2000.
J. S´andor, D. S. Mitrinovi´c and B. Crstici, Handbook of Number Theory I, Second printing of the 1996 original, Springer, Dordrecht, 2006.