Some Remarks on Primal Submodules

Authors

  • S. Ebrahimi Atani Department of Mathematics, University of Guilan, Rasht, Iran
  • A. Yousefian Darani Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

DOI:

https://doi.org/10.5644/SJM.04.2.03

Keywords:

Primal submodule, primary submodule

Abstract

In this paper, we study the primal submodules of a module over a commutative ring with non-zero identity. We generalize the primal decomposition of ideals (see [2]) to that of submodules. Let $R$ be a commutative ring, $M$ an $R$-module and $N$ a submodule of $M$. We establish a decomposition of $N$ as an intersection of primal submodules of $M$. We show that if $R$ is a Prüfer domain of finite character, then $N$ has a primal decomposition. Also we prove that the representation of submodules as reduced intersections of primal submodules is unique.

 

2000 Mathematics Subject Classification. 13A05, 13F05, 20M14

 

 

Statistics

Abstract: 32  /   PDF: 11

 

References

L. Fuchs, On primal ideals, Proc. Amer. Math. Soc., 1 (1950), 1–6.

L. Fuchs and E. Mosteig, Ideal theory in Pr¨ufer domains-An unconventional approach, J. Algebra, 252 (2002), 411–430.

C. U. Jensen, Arithmetical rings, Acta Math. Hung., 17 (1-2) (1966), 115–123.

R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 1990.

Downloads

Published

11.06.2024

How to Cite

Atani, S. E., & Darani, A. Y. (2024). Some Remarks on Primal Submodules. Sarajevo Journal of Mathematics, 4(2), 181–190. https://doi.org/10.5644/SJM.04.2.03

Issue

Section

Articles