Some Remarks on Primal Submodules

Authors

  • S. Ebrahimi Atani Department of Mathematics, University of Guilan, Rasht, Iran
  • A. Yousefian Darani Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

DOI:

https://doi.org/10.5644/SJM.04.2.03

Keywords:

Primal submodule, primary submodule

Abstract

In this paper, we study the primal submodules of a module over a commutative ring with non-zero identity. We generalize the primal decomposition of ideals (see [2]) to that of submodules. Let $R$ be a commutative ring, $M$ an $R$-module and $N$ a submodule of $M$. We establish a decomposition of $N$ as an intersection of primal submodules of $M$. We show that if $R$ is a Prüfer domain of finite character, then $N$ has a primal decomposition. Also we prove that the representation of submodules as reduced intersections of primal submodules is unique.

 

2000 Mathematics Subject Classification. 13A05, 13F05, 20M14

 

Downloads

Download data is not yet available.

References

L. Fuchs, On primal ideals, Proc. Amer. Math. Soc., 1 (1950), 1–6.

L. Fuchs and E. Mosteig, Ideal theory in Pr¨ufer domains-An unconventional approach, J. Algebra, 252 (2002), 411–430.

C. U. Jensen, Arithmetical rings, Acta Math. Hung., 17 (1-2) (1966), 115–123.

R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 1990.

Downloads

Published

11.06.2024

How to Cite

Atani, S. E., & Darani, A. Y. (2024). Some Remarks on Primal Submodules. Sarajevo Journal of Mathematics, 4(2), 181–190. https://doi.org/10.5644/SJM.04.2.03

Issue

Section

Articles