Some Remarks on Primal Submodules
DOI:
https://doi.org/10.5644/SJM.04.2.03Keywords:
Primal submodule, primary submoduleAbstract
In this paper, we study the primal submodules of a module over a commutative ring with non-zero identity. We generalize the primal decomposition of ideals (see [2]) to that of submodules. Let $R$ be a commutative ring, $M$ an $R$-module and $N$ a submodule of $M$. We establish a decomposition of $N$ as an intersection of primal submodules of $M$. We show that if $R$ is a Prüfer domain of finite character, then $N$ has a primal decomposition. Also we prove that the representation of submodules as reduced intersections of primal submodules is unique.
2000 Mathematics Subject Classification. 13A05, 13F05, 20M14
Downloads
References
L. Fuchs, On primal ideals, Proc. Amer. Math. Soc., 1 (1950), 1–6.
L. Fuchs and E. Mosteig, Ideal theory in Pr¨ufer domains-An unconventional approach, J. Algebra, 252 (2002), 411–430.
C. U. Jensen, Arithmetical rings, Acta Math. Hung., 17 (1-2) (1966), 115–123.
R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 1990.