A Special Class of Harmonic Univalent Functions
DOI:
https://doi.org/10.5644/SJM.04.2.05Keywords:
Harmonic function, coefficient inequalities, Salagean derivativesAbstract
We define and investigate a special class of Salagean-type harmonic univalent functions in the open unit disk. We obtain coefficient conditions, extreme points, distortion bounds, convex combinations for the above class of harmonic univalent functions.
2000 Mathematics Subject Classification. Primary 30C45 ; Secondary 30C50
Downloads
References
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9 (1984), 3–25.
J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470–477.
J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, South. J. Pure Appl. Math., 2 (2002), 77–82.
J. M. Jahangiri, Yong Chan Kim and H.M. Srivastava, Construction of a certain class of harmonic close to convex functions associated with the Alexander integral transform, Integral Transforms Spec. Funct., 14 (3) (2003), 237–242.
G. S. Salagean, Subclass of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Burcharest, 1 (1983), 362–372.
H. Silverman, Harmonic univalent function with negative coefficients, J. Anal. Appl., 220 (1998), 283–289.
H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zeland J. Math., 28 (1999), 275–284.
S. Yal¸cın, On certain harmonic univalent functions defined by Salagean derivatives, Soochow J. Math., 31 (3) (2005), 321–331.
S. Yal¸cın, A new class of Salagean-type harmonic univalent functions, Appl. Math. Lett., 18 (2005), 191–198.