On the difference equation ${ x_{n+1}=\frac{ax_{n}^{2}+bx_{n-1}x_{n-k}}{cx_{n}^{2}+dx_{n-1}x_{n-k}}}$

Authors

  • E. M. Elabbasy Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
  • H. El-Metwally Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
  • E.M. Elsayed Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

DOI:

https://doi.org/10.5644/SJM.04.2.09

Keywords:

Stability, periodic solutions, difference equations

Abstract

In this paper we investigate the global convergence result, boundedness, and periodicity of solutions of the recursive sequence

\begin{equation*}
x_{n+1}=\frac{ax_{n}^{2}+bx_{n-1}x_{n-k}}{cx_{n}^{2}+dx_{n-1}x_{n-k}},\;\;\;n=0,1,\dots
\end{equation*}
where the parameters $a,b,c$ and $d$ are positive real numbers and the initial conditions $ x_{-k},x_{-k+1},\dots,x_{-1}$ and $x_{0}$ are arbitrary positive numbers.

 

2000 Mathematics Subject Classification. 39A10

Downloads

Download data is not yet available.

References

E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the periodic nature of some max-type difference equation, Int. J. Math. Sci., 14 (2005), 2227–2239.

E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, On the difference equation $x_{n+1}=frac{alpha

x_{n-k}}{beta +gamma prod_{i=0}^{k}x_{n-i}},$, J. Conc. Appl. Math., 5 (2) (2007), 101–113.

H. El-Metwally, E. A. Grove, G. Ladas, and H. D.Voulov, On the global attractivity and the periodic character of some difference equations, J. Difference Equ. Appl., 7 (2001), 837–850.

H. El-Metwally, E. A. Grove, G. Ladas, and L. C. McGrath, On the Difference Equation $y_{n+1}=frac{y_{n-(2k+1)}+p}{

y_{n-(2k+1)}+qy_{n-2l}}$, Proceedings of the 6th ICDE, Taylor and Francis, London, 2004.

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.

M. R. S. Kulenovic, G. Ladas and N. R. Prokup, On a rational difference equation, Comput. Math. Appl., 41 (2001), 671–678.

M. R. S. Kulenovic, G. Ladas and N. R. Prokup, On the recursive sequence $;x_{n+1}=frac{ax_{n}+bx_{n-1}}{1+x_{n}},$, J. Difference Equ. Appl., 6 (5) (2001), 563–576.

M. R. S. Kulenovic, G. Ladas and W. S. Sizer, On the recursive sequence $;x_{n+1}=frac{ax_{n}+bx_{n-1}}{gamma x_{n}+delta x_{n-1}},$, Math. Sci. Res. Hot-Line 2 (5) (1998), 1–16.

Downloads

Published

11.06.2024

How to Cite

Elabbasy, E. M., El-Metwally, H., & Elsayed, E. (2024). On the difference equation ${ x_{n+1}=\frac{ax_{n}^{2}+bx_{n-1}x_{n-k}}{cx_{n}^{2}+dx_{n-1}x_{n-k}}}$. Sarajevo Journal of Mathematics, 4(2), 239–248. https://doi.org/10.5644/SJM.04.2.09

Issue

Section

Articles