New Inequalities for Means
DOI:
https://doi.org/10.5644/SJM.04.1.04Keywords:
Arithmetic, geometric, harmonic and logarithmic mean, inequalities between means, convex and concave function, power-mean and Hadamard’s inequalityAbstract
In this paper we present new inequalities for means. If $$ 0<a<b,
\;A(a,b)=\frac{a+b}{2},\; G(a,b)=\sqrt{ab},\;
H(a,b)=\frac{2ab}{a+b}, $$ $$ L(a,b)=\frac{b-a}{\ln{b}-ln{a}},\;
I(a,b)=\frac{1}{e}\left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}},
$$ we will prove seven new theorems concerning these means.
2000 Mathematics Subject Classification. 26A48, 26D20
Downloads
References
E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, 1961.
M. Bencze, New means, new inequalities and refinements, Octogon Math. Mag., 9 (1A) (2001), 46–104.
M. Bencze, New inequalities for means, Octogon Math. Mag., 13 (1A) (2005), 191–192.
M. Bencze and L. Zhou, Problem 3097., Crux Mathematicorum with Mathematical Mayhem, 32 (8) (2006), 531–532.
P. S. Bullen, D. S. Mitrinovi´c and P. M. Vasi´c, Means and Their Inequalities, Reidel, Dordrecht, 1988.
G. H. Hardy, J. E. Littlewood and G. P´olya, Inequalities, Cambridge, At the University Press, 1952.
D. S. Mitrinovi´c, Analytic Inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1970.