New Inequalities for Means

Authors

  • Š. Arslanagić University of Sarajevo, Faculty of Natural Sciences and Mathematics, Department of Mathematics, Sarajevo, Bosnia and Herzegovina
  • M. Bencze Sacele, Jud. Brasov, Romania

DOI:

https://doi.org/10.5644/SJM.04.1.04

Keywords:

Arithmetic, geometric, harmonic and logarithmic mean, inequalities between means, convex and concave function, power-mean and Hadamard’s inequality

Abstract

In this paper we present new inequalities for means. If $$ 0<a<b,
\;A(a,b)=\frac{a+b}{2},\; G(a,b)=\sqrt{ab},\;
H(a,b)=\frac{2ab}{a+b}, $$ $$ L(a,b)=\frac{b-a}{\ln{b}-ln{a}},\;
I(a,b)=\frac{1}{e}\left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}},
$$ we will prove seven new theorems concerning these means.

 

2000 Mathematics Subject Classification. 26A48, 26D20

Downloads

Download data is not yet available.

References

E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, 1961.

M. Bencze, New means, new inequalities and refinements, Octogon Math. Mag., 9 (1A) (2001), 46–104.

M. Bencze, New inequalities for means, Octogon Math. Mag., 13 (1A) (2005), 191–192.

M. Bencze and L. Zhou, Problem 3097., Crux Mathematicorum with Mathematical Mayhem, 32 (8) (2006), 531–532.

P. S. Bullen, D. S. Mitrinovi´c and P. M. Vasi´c, Means and Their Inequalities, Reidel, Dordrecht, 1988.

G. H. Hardy, J. E. Littlewood and G. P´olya, Inequalities, Cambridge, At the University Press, 1952.

D. S. Mitrinovi´c, Analytic Inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

Downloads

Published

11.06.2024

How to Cite

Arslanagić, Š., & Bencze, M. (2024). New Inequalities for Means. Sarajevo Journal of Mathematics, 4(1), 39–47. https://doi.org/10.5644/SJM.04.1.04

Issue

Section

Articles