Properties of Nehari Disks
DOI:
https://doi.org/10.5644/SJM.04.1.05Abstract
Let $D$ be a simply connected plane domain and let $B$ be the unit disk. The inner radius of $D$, $\sigma (D)$ is defined by $
\sigma (D) = \sup \{a:a \geq 0,||S_f||_{D} \leq a$ implies $f$ is univalent in $D$ . Here $S_f$ is the Schwarzian derivative of $f$, $ \rho_{D}$ the hyperbolic density on $D$ and $ || S_{f} ||_{D} = \sup_{z \in D} |S_{f} (z)|
\rho_{D}^{-2} (z) $. Domains for which the value of $ \sigma (D)$ is known include disks, angular sectors and regular polygons as well as certain classes of rectangles and equiangular hexagons.
When the inner radius for the above-mentioned domains, except non convex angular sectors, is computed it is seen that $ \sigma (D) = 2- || S_h ||_{B}$, where $ h:B \longrightarrow D $ is the Riemann mapping and $B$ the unit disk, a fact that yields a convenient method for computing $\sigma(D)$. We introduce the name Nehari disks for domains with the above property.
In this paper we generalize some results by Gehring, Pommerenke, Ahlfors and Minda that were proved in the unit disk, to analogous results for Nehari disks.
2000 Mathematics Subject Classification. Primary 30C55; Secondary 30C20
Downloads
References
L. V. Ahlfors, Quasiconformal reflections, Acta Math., 109 (1963), 291–301.
L. V. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc., 13 (1962), 975–978.
D. Calvis, The inner radius of univalence of normal circular triangles and regular polygons, Complex Variables Theory Appl., 4 (1985).
F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv., 52 (1977), 561–572.
F. W. Gehring, F. W and C. Pommerenke, On the Nehari univalence criterion and quasicircles, Comment. Math. Helv., 59 (1984), 226–242.
E. Hille, Remarks on a paper by Zeev Nehari, Bull. Amer. Math. Soc., 55 (1949), 552–553.
M. Lehtinen, On the inner radius of univalency for non-circular domains, Ann. Acad. Sci. Fenn. Ser. A 5, 1 (1980), 45–47.
O. Lehto, Remarks on Nehari’s theorem about the Schwarzian derivative and schlicht functions, journal d’Analyse Math., 36 (1979), 184–190.
O. Lehto, Univalent Functions and Teichm¨uller Spaces, Springer-Verlag, New York, 1987.
L. Miller-Van Wieren, Univalence criteria for classes of polygons, submitted for publication.
L. Miller-Van Wieren, Univalence Criteria for Analytic Functions, PhD Thesis, University of Michigan, 1994.
L. Miller-Van Wieren, Univalence criteria for classes of rectangles and equiangular hexagons, Ann. Acad. Sci. Fenn. Math., 22 (1997), 407–424.
L. Miller-Van Wieren, On Nehari disks and the inner radius, Comment. Math. Helv., 76 (2001), 183–199.
D. Minda, The Schwarzian derivative and univalence criteria, Cont. Math., 38 (1985), 43–52.
Z. Nehari, The Schwarzian derivative and Schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545–551