On a Nonlinear Volterra-Fredholm Integral Equation
DOI:
https://doi.org/10.5644/SJM.04.1.06Keywords:
Volterra-Fredholm integral equation, Banach fixed point theorem, integral inequality, Bielecki type norm, existence and uniqueness, estimates on solutions, continuous dependenceAbstract
In this paper we study the existence, uniqueness and other properties of solutions of a certain nonlinear Volterra-Fredholm integral equation. The well known Banach fixed point theorem and the new integral inequality with explicit estimate are used to establish the results.
2000 Mathematics Subject Classification. 34K10, 35R10
Downloads
References
S. Asirov and Ja. D. Mamedov, Investigation of solutions of nonlinear VolterraFredholm operator equations, Dokl. Akad. Nauk SSSR, 229 (1976), 982–986.
A. Bielecki, Un remarque sur l’application de la m´ethode de Banach-CaccioppliTikhonov dans la th´eorie des ´equations differentielles ordinaires, Bull. Acad. Polon. Sci. S´er. Sci. Math. Phys. Astr., 4 (1956), 261–264.
T. A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.
C. Corduneanu, Some perturbation problems in the theory of integral equations, Math. System Theory, 1 (1967), 143–155.
C. Corduneanu, Bielecki’s method in the theory of integral equations, Ann. Univ. Mariae Curie-Sklodowskia, Section A, 38 (1984), 23–40.
C. Corduneanu, Integral Equations and Applications, Cambridge University Press, 1991.
Sh. G. Gamidov, Integral inequalities for boundary value problems for differential equations, Diff. Eq., 5 (1969), 463–472 (English translation from Russian).
M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford, 1964.
R. K. Miller, J. A. Nohel and J. S. W. Wong, A stability theorem for nonlinear mixed integral equations, J. Math. Anal. Appl., 25 (1969), 446–449.
R. K. Miller, Nonlinear Volterra Integral Equations, W.A.Benjamin, Menlo Park CA, 1971.
J. A. Nohel, Asymptotic relationships between systems of Volterra equations, Annali di Matematica pura ed applicata, XC (1971), 149–165.
B. G. Pachpatte, On the existence and uniqueness of solutions of Volterra-Fredholm integral equations, Math. Seminar Notes, Kobe Univ., 10 (1982), 733–742.
B. G. Pachpatte, On a nonlinear Volterra Integral-Functional equation, Funkcialaj Ekvacioj, 26 (1983),1–9.
B. G. Pachpatte, Inequalities for Differential and Integral Equations, Mathematics in science and Engineering series, Vol.197, Academic Press, New York, 1998.
B. G. Pachpatte, Explicit bounds on Gamidov type integral inequalities, Tamkang J. Math., 37 (2006), 1–9.
B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, NorthHolland Mathematics Studies, Vol.205, Elsevier Science B.V., 2006.