The Boundedness of the $B$-Riesz Potential in the $B$-Morrey Spaces
DOI:
https://doi.org/10.5644/SJM.04.1.09Keywords:
$B$-maximal operator, $B$-Riesz potential, $B$-Morrey spaces, Sobolev-Morrey type estimatesAbstract
We consider the generalized shift operator ($B$ shift operator),
generated by the Laplace-Bessel differential operator $\Delta
_{B}=\sum_{i=1}^{k}B_{i}+ \sum_{j=k+1}^{n}\frac {\partial ^2
}{\partial x_j^2},$ $B=\left(B_1,\ldots,B_k \right)$,
$B_i=\frac{\partial ^2}{\partial x_i^2}+ \frac{\gamma_i
}{x_i}\frac\partial {\partial x_i},$ $\gamma_i>0,$
$i=1,\ldots,k$, $|\gamma|=\gamma_1+\dots+\gamma_k$. The
$B$-maximal functions and the $B$-Riesz potentials, generated by
the Laplace-Bessel differential operator $\Delta_{B}$ are
investigated. We study the $B$-Riesz potentials in the $B$-Morrey
spaces. The inequality of Sobolev-Morrey type is established for the $B$-Riesz potentials.
2000 Mathematics Subject Classification. 42B20, 42B25, 42B35
Downloads
References
I. A. Aliev and S. Bayrakci, On inversion of Bessel potentials associated with the Laplace-Bessel differential operator, Acta Math. Hungar., 95 (1–2) (2002), 125–145.
R. R. Coifman and G. Weiss, Analyse harmonique non commutative sur certains expaces homogenes, Lecture Notes in Math., 242, Springer- Verlag. Berlin, 1971.
A. D. Gadjiev and I. A. Aliev, On classes of operators of potential types, generated by a generalized shift, Reports of enlarged Session of the Seminars of I.N.Vekua Inst. of Applied Mathematics, Tbilisi, 3 (2) (1988), 21–24 (Russian).
V. S. Guliyev, Sobolev theorems for the Riesz B-potentials, Dokl. RAN, 358 (4) (1998), 450–451. (Russian)
V. S. Guliyev, Sobolev theorems for anisotropic Riesz-Bessel potentials on MorreyBessel spaces, Doklady Academy Nauk Russia, 367 (2) (1999), 155–156.
V. S. Guliyev, Some properties of the anisotropic Riesz-Bessel potential, Analysis Mathematica, 26 (2) (2000), 99–118.
V. S. Guliyev, On maximal function and fractional integral, associated with the Bessel differential operator, Mathematical Inequalities and Applications, 6 (2) (2003), 317–330.
V. S. Guliyev, N. N.Garakhanova and Zeren Yusuf, Poitwise and integral estimates for B-Riesz potentials in terms of B-maximal and B-fractional maxima functions, Siberian Mathematical Journal, (in press) .
V. S. Guliyev and J.J. Hasanov, Sobolev-Morrey type inequality for Riesz potentials, associated with the Laplace-Bessel differential operator, Fractional Calculus and Applied Analysis, 9 (1) (2006), 17–32.
D. Danielli, A Fefferman-Phong type inequality and applications to quasilinear subelliptic equatioins, Potential Analysis, 11 (1999), 387–413.
I. Ekincioglu and A. Serbetci, On weighted estimates of high order Riesz-Bessel transformations generated by the generalized shift operator, Acta Mathematica Sinica, 21 (1) (2005), 53–64.
B. M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk, 6 (1951), 2 (42), 102–143. (Russian)
L. N. Lyakhov, Multipliers of the Mixed Fourier-Bessel Transformation, Proc. V.A.Steklov Inst. Math., 214 (1997), 234–249.
I. A. Kipriyanov Fourier-Bessel transformations and imbedding theorems, Trudy Math. Inst. Steklov, 89 (1967), 130–213.
B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17–92.
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivative. Theory and Applications, Gordon and Breach Sci. Publishers, 1993.
K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform, Mathematical Institute of Wroslaw (Poland), Preprint No. 45 (1985).
K. Stempak, Almost everywhere summability of Laguerre series, Studia Math., 100 (2) (1991), 129–147.
K. Trimeche, Inversion of the Lions transmutation operators using generalized wavelets, Applied and Computational Harmonic Analysis, 4 (1997), 97–112.