A Note on the Fixed Point Property of Non-metric Tree-Like Continua

Authors

  • Ivan Lončar Faculty of Organizations and Informatics, Varaˇzdin, Croatia

DOI:

https://doi.org/10.5644/SJM.04.1.12

Keywords:

Continuum, fixed point property, inverse system

Abstract

The main purpose of this paper is to study the fixed point property of non-metric tree-like continua. It is proved, using the inverse systems method, that if $X$ is a non-metric tree-like continuum and if $h:X\rightarrow X$ is a periodic homeomorphism, then $h$ has the fixed point property (Theorem 2.4). Some theorems concerning the fixed point property of arc-like non-metric continua are also given.

 

2000 Mathematics Subject Classification. Primary 54H25, 54F15; Secondary 54B35

Downloads

Download data is not yet available.

References

A. Chigogidze, Inverse spectra, Elsevier, 1996.

E. Dyer, A fixed point theorem, Proc. Am. Math. Soc., 7 (1956), 662–672.

R. Engelking, General Topology, PWN, Warszawa, 1977.

J. B. Fugate and T. B. McLean, Compact groups of homeomorphisms on tree-like continua, Trans. Am. Math. Soc., 267 (1981), 609–620.

O. H. Hamilton, A fixed point property for pseudo-arcs and certain other metric continua, Proc. Am. Math. Soc., 2 (1951), 173–174.

A. Illanes and S. B. Nadler, Jr., Hyperspaces : Fundamentals and Recent Advances, Marcel Dekker, Inc., New York and Basel, 1999.

I. Lonˇcar, A fan X admits a Whitney map for C(X) iff it is metrizable, Glas. Mat. Ser. III, 38 (58) (2003), 395–411.

I. Lonˇcar, The fixed point property for arc component preserving mappings of nonmetric tree-like continua, Math. Commun., 10 (2005), 15–21.

S. Mardeˇsi´c, Chainable continua and inverse limits, Glas. Mat. Fiz. i Astr., 14 (1959), 219–232.

J. van Mill, Infinite-Dimensional Topology, Elsevier Sci. Pub., 1989.

S. B. Nadler, Jr., Continuum Theory, Marcel Dekker, New York, 1992.

L. E. Ward, A fixed point theorem, Amer. Math. Montly, 65 (1958), 271–272.

Downloads

Published

11.06.2024

How to Cite

Lončar, I. (2024). A Note on the Fixed Point Property of Non-metric Tree-Like Continua. Sarajevo Journal of Mathematics, 4(1), 133–142. https://doi.org/10.5644/SJM.04.1.12

Issue

Section

Articles