Smooth Solutions of a Class of Quasielliptic Equations

Authors

  • Alik M. Najafov Azerbaijan University of Archithecture and Construction, Baku, Azerbaijan

DOI:

https://doi.org/10.5644/SJM.03.2.06

Keywords:

Smothness of solution, flexible $\lambda$-horn, quasielliptic equation

Abstract

In this paper the smoothness of solutions of one class of quasielliptic equations in the bounded domain $G\subset R^{n}$ satisfying the flexible $\lambda$-horn condition are studied.

 

2000 Mathematics Subject Classification. 35Q35, 35A15

Downloads

Download data is not yet available.

References

L. Arkeryd, On $L^{p}$ estimates for quasi elliptic boundary problems, Math. Scand., 24 (1) (1969), 141–144.

G. C. Barozzi, Su una generalizzazione degli spazi $L^(q,lambda)$ di Morrey, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., Ser. III, 19 (4) (1965), 609–626.

O. V. Besov, V. P. Il’yin and S. M. Nikolsky, Integral Representations of Functions and Imbedding Theorems, Nauka, 1996, 480p. (in Russian).

S. Campanato, Caratterizzazione delle tracce di funzioni appatenenti ad una classe di Morrey iniseme con le loro derivate prime, Ann. Sc. Norm. Super. Pisa, Ser. III., 15 (3) (1961), 263–281.

S. Campanato, Proprieta di inclusione per spazi di Morrey, Ric. Mat., 12 (1) (1963), 67–86.

A. D. Djabrailov, On ones integral representation of smooth functions and some failies of function space DAN SSSR, 166 (6) (1966), 1280–1283 (in Russian).

P. S. Filatov, Local anisotropic H¨older estimates for solutions to a quasielliptic equation, Sib. Math. J., 38 (6) (1997), 1397–1409 (in Russian).

E. Giusti, Equazioni quasi elliptic c spazi $ S^{p,theta }(Omega,delta )$, Ann. Mat. Pure Appl., ser.4, 75 (1967), 313–353.

D. Greco, Criteri di compatteza per insieme di funzioni in ”n” variabli indeependenti, Ric. Mat. Napoli, 1 (1952), 124–144.

V. S. Guliev and A. M. Najafov, The imbedding theorems on the Lizorkin-TriebelMorrey type spaces, In: Progress in Analysis, Proceedings of the 3-th International ISAAC Congress, Berlin, Vol.1, (2001), 23–30.

R. V. Huseynov, On the smoothness of solutions of one classe of quasielliptic equations, Vestn. Mosk. Univ., ser.1, Math. Mech., 6 (1992), 10–14 (in Russian).

V. P. Il’yin, On some properties of the functions of spaces $W_{p,a, {ae }}^{l}(G)$, Zap. Nauchn. sem. LOMI AN SSSR, 23 (1971), 33–40 (in Russian).

C. B. Morrey, Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. 1, 1943.

C. B. Morrey, Second order elliptic systems of differential equations, Ann. Math. Studies, 3 (1954), Princefon Univ. Press.

C. B. Morrey, Second order elliptic equations in several variables and H¨older continuity, Math. Zelt., 72 (2) (1959), 146–164.

A. M. Najafov, The spaces with parameters of functions with dominant mixed derivatives, (PhD thesis), Baku, 1996, 127pp (in Russian).

A. M. Najafov, The interpolation theorems on the Besov-Morrey and Triebel-LizorkinMorrey type spaces, Mater. of scientific confer. ”The questions on functional analysis and and mathematical physics” dedicated to 80-year of Baku State University named after M. A. Rasulzadeh, (1999), 363–366 (in Russian).

A. M. Najafov, On solutions of some the qypoelliptic equations in domains, satisfying the condition flexible horn’s, ”Pontryaqinskie chtenie-XI” na Voronegsk. vesenney matematich. shkole. ”The modern methods in theory of boundary problems”. Voroneg 2000, pp. 107 (in Russian).

A. M. Najafov, The imbedding theorems for the space of Besov-Morrey type with dominant mixed derivatives, Proceedings of IMM of NAS Azerbaijan, 12 (20) (2000), 97–104.

A. M. Najafov, The imbedding theorems on the Besov-Djabrailov-Morrey type space and its applications, 3rd International ISAAC Congress Freie Universitet Berlin, Germany, August 20–25, (2001), 33–35.

A. M. Najafov, Some families functional spaces and imbedding theorems, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 12 (24) (2002), 114–121.

A. M. Najafov, Interpolation theorem of Besov-Morrey type spaces and some its applicatons, Transactions ISSUE mathematics and mechanics, Baku, 24 (4) (2004), 125–134.

A. M. Najafov, On some properties of functions in the Sobolev-Morrey type spaces $W_{p,a,ae ,tau}^{l}(G)$, Sib. Math. J., 46 (3) (2005), 634–642 (in Russian).

A. M. Najafov, On some properties of the functions of spaces of type Sobolev-Morrey, Cent. Eur. J. Math., 3 (3) (2005), 496–507.

A. M. Najafov, On the solutions of one classes of quasielliptic equations, Uchenie zapiski AZUAC, 1 (2006), 73–79 (in Russian).

Yu. V. Netrusov, On some imbedding theorems of Besov-Morrey type spaces, Zap. Nauchn. sem. LOMI AN SSSR, 139 (1984), 139–147 (in Russian).

S. M. Nikolskii, The functions with dominating mixed derivative satisfying the multiple H¨older condition, Sib. Math. Zh., 4 (6) (1963), 1342–1364.

L. Nirenberg, Estimates and exictence of solutions of elliptic equations, Commun. Pure Appl. Math., 9 (3) (1956), 509–530.

Downloads

Published

12.06.2024

How to Cite

Najafov, A. M. (2024). Smooth Solutions of a Class of Quasielliptic Equations. Sarajevo Journal of Mathematics, 3(2), 193–206. https://doi.org/10.5644/SJM.03.2.06

Issue

Section

Articles